470-4118 – Integrální a diskrétní transformace (ITDT)

Garantující katedraKatedra aplikované matematiky
Garant předmětudoc. Ing. David Horák, Ph.D.
Úroveň studiapregraduální nebo graduální
Verze předmětu
Kód verzeRok zavedeníRok zrušeníKredity
470-4118/01 2012/2013 8
470-4118/02 2015/2016 8
470-4118/03 2016/2017 4
470-4118/04 2016/2017 4

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Student by měl zvládnout teorii a praxi integrálních a diskrétních transformací a osvojit si správné postupy při řešení konkrétních úloh, sestavit algoritmus, naprogramovat a zhodnotit řešení konkrétní praktické úlohy.

Vyučovací metody

Přednášky
Cvičení (v učebně)
Projekt

Anotace

Předmět patří do skupiny základních matematických předmětů vysokoškolského studia technických oborů. Student bude seznámen s teorií a užitím Laplaceovy transformace a Z-transformace, Fourirových řad, Fourierovy, okenní Fourierovy a waveletovy transformace a to jak ve spojitém tak diskrétním tvaru, včetně jejich algoritmizací, efektivních implementací a aplikací pro zpracování signálů jako je časově frekvenční analýza, komprese a odšumování.

Povinná literatura:

• Častová, N.,Kozubek,T: Integrální transformace, elektr. verze. www.am.vsb.cz • Horák D., Diskrétní transformace, elektronická verze http://mi21.vsb.cz/modul/diskretni-transformace • Galajda P., Schrötter Š.: Funkce komplexní proměnné a operátorový počet, Alfa-Bratislava, 1991. • G.James and D.Burley, P.Dyke, J.Searl, N.Steele, J.Wright: Moderní inženýrská matematika,Addison-Wesley Publishing Company, 1994. • Čížek, V: Diskrétní Fourierova transformace a její použití, SNTL, Praha, 1981. • Častová N.: Sylaby k předmětu Diskrétní transformace. • Bachman G., Narici L., Becktenstein E.: Fourier and wavelet analysis, Springer, 2000. • William L. Briggs, Van Emden Henson: THE DFT, An Owner´s Manual for the Discrete Fourier Transform, SIAM, 1995,ISBN 0-89871-342-0.

Doporučená literatura:

• Škrášek J., Tichý Z.: Základy aplikované matematiky II, SNTL, Praha, 1986.

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.