352-0329 – Modelling and Simulation of Mechatronic Systems (MaSMS)

Gurantor departmentDepartment of Control Systems and Instrumentation
Subject guarantorprof. Ing. Petr Noskievič, CSc.
Study levelundergraduate or graduate
Subject version
Version codeYear of introductionYear of cancellationCredits
352-0329/01 2009/2010 6
352-0329/02 2015/2016 6
352-0329/03 2019/2020 6

Subject aims expressed by acquired skills and competences

The goal of this subject is to obtain the knowledge from the modelling of the basic dynamic systems and creation of the simulation models of the mechatronic systems. The next goal is to be able to realize the simulation model in the simulation programme and to simulate the responses of the systems. The subject is focused ability to use the basic methods of the mathematical physical modelling, realization and use of the simulation models in Mechatronics.

Teaching methods

Experimental work in labs
Project work


The subject is focused on the methods of the mathematical physical modelling, realization and use of the simulation models in Mechatronics. The topic is delivered in 14 lectures: 1. Modelling, mathematical and simulation models, physical models, their use in the technical practice. 2. Basic types of the mathematical models of the dynamic systems and review of the approaches of their obtaining, overview of the methods of the analytical and experimental identification. 3. Realization of the mathematical models in the simulation programme – models in the form of transfer functions, differential equations, modelling of the nonlinearities, logical functions. 4. Simulation programmes – classification, use, numerical methods. 5. Introduction in the modelling of the mechanical systems, analytical methods of the creating of the model. 6. Modelling of the mechanical subsystems of the mechatronic systems. 7. Modelling of the car subsystems – model of the car suspension, car breaking, modelling of the ABS. 8. Modelling of the electrical subsystems of the mechatronic systems. 9. Modelling of the hydraulic systems, creation of the mathematical model and their realization. 10. Modelling of the thermal systems. 11. Modelling of the control systems, digital controllers. Analysis of the dynamic systems using the simulation models. 12. Calculation of the system responses, step response, Bode plot. Design of the feedback control using the simulation models. 13. Verification of the simulation models, data acquisition from the real system, verification of the outputs of the simulation model and real system – experiment. 14. Case study of the use of the simulation models in the development cycle of the mechatronic system.

Compulsory literature:

LJUNG,L. & GLAD,T. Modeling of Dynamic Systems.Prentice Hall,Inc.Engelwood Cliffs, New Persey 07632. ISBN 0-13-597097-0. CLOSE, M.,Ch. & FREDERICK, K. Modeling and Analysis of Dynamic Systems. John Wiley & Sons, Inc. New York. 1995. ISBN 0-471-125172-2. Davies,M., Schmitz, T.,L.: System Dynymics for Mechanical Engineers. Springer. 2015. ISBN 978-1-4614-9293-1. NOSKIEVIČ, P.: Modelling and Simulation of Mechatronic Systems using MATLAB-Simulink. Studijní texty v angličtině, Fakulta strojní, VŠB-TU Ostrava, 2013, 85 stran. ISBN 978-80-248-3250-3

Recommended literature:

Matko,D.-Karba,R.-Zupančič,B.: Simulation and Modelling of Continuous Systems. A Case Study Approach. Prentice Hall.1992. ISBN 0-13-808064-X. Hartley,T.,T.-Beale,G.,O.-Chicatelli,S.,P.:Digital Simulation of Dynamic Systems. A Control Theory Approach. PRT Prentice Hall, 1994. ISBN 0-13-219957-2.


Subject has no prerequisities.


Subject has no co-requisities.