Gurantor department | Department of Thermal Engineering |

Subject guarantor | doc. Ing. Marek Velička, Ph.D. |

Study level | undergraduate or graduate |

Subject version | |||
---|---|---|---|

Version code | Year of introduction | Year of cancellation | Credits |

635-2001/01 | 2014/2015 | 2022/2023 | 6 |

635-2001/02 | 2014/2015 | 2022/2023 | 6 |

Student will be able:
- to demonstrate the feature of criteria of similarity,
- to solve the pressure losses during the flow of fluids,
- to describe the fundamental principle in hydromechanics,
- to solve simple examples focused on heat transfer (conduction, convection, radiation).

Lectures

Seminars

Individual consultations

Tutorials

Theory of similarity, criterion equations. Flow: statics and dynamics of fluids, flow of real fluids, pressure losses, flow of gases in furnace systems. Conduction heat transfer: analytical and numerical solution of steady and transient problems. Convective heat transfer: natural, forced, heat transfer between fluid and solid surface. Radiation heat transfer: general laws, radiation properties of bodies, exchange of radiation energy between solid bodies, radiation of gases, vapours and their mixtures.

[1] KREITH., F., BLACK, W. Z. Basic heat transfer. New York : Harper and Row, 1980.
[2] KRAUSE, E. Fluid Mechanics. Berlin: Springer Verlag, 2005. ISBN 3-540-22981-7.

[1] LIENHARD IV, J. H., LIENHARD V, J. H. A Heat Transfer Textbook. 4th ed. Cambridge: Phlogiston Press, 2012. http://web.mit.edu/lienhard/www/ahtt.html
[2] BEJAN, A., KRAUS, A. D. Heat Transfer Handbook. John Wiley & Sons, 2003. ISBN 978-0-471-39015-2.

Subject has no prerequisities.

Subject has no co-requisities.