151-0337/02 – Mathematics D (Mat D)

Gurantor departmentDepartment of Mathematical Methods in EconomicsCredits5
Subject guarantorMgr. Marian Genčev, Ph.D.Subject version guarantorMgr. Marian Genčev, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Study languageCzech
Year of introduction2004/2005Year of cancellation2009/2010
Intended for the facultiesEKFIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
GEN02 Mgr. Marian Genčev, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit 2+2

Subject aims expressed by acquired skills and competences

The aim of the subject Mathematics D is the systematic study and fixation of immediate knowledges from the theory of real and complex sequences, from the theory of real and functional infinite series and the basic algorithms for finding the solution of difference equations. The student get up to work with the concept (functional) sequence and can apply it in the theory of infinite seires which offer an interesting apparatus for further study of certain more sophisticated models in the reality. The students learn also the method of mathematical induction and the algorithms used by finding the solution of difference equations. The focal point of this course will be the concept of the infinite series.

Teaching methods


The structure of the course Mathematics D developes the basic knowledge acquired in the courses Mathmatics A and Mathematics B and extends in a significant manner the theory of sequences in real and complex field, the theory of real and functional infinite series and introduces the basic algorithms for finding the solution of certain types of difference equations. Hence, the subject's structure can afford good resources for further study of qualitative and quantitative relationships in the economics and helps to develope the logical thinking.

Compulsory literature:

Recommended literature:

Way of continuous check of knowledge in the course of semester


Další požadavky na studenta


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

1. Diferenciální počet – funkce jedné proměnné, definiční obor, vlastnosti funkcí, elementární funkce, limita funkce, derivace funkce, průběh funkce. 2. Integrální počet – neurčitý integrál, určitý integrál, nevlastní integrál. 3. Diferenciální rovnice – obyčejná diferenciální rovnice prvního řádu, obyčejná diferenciální rovnice druhého řádu. 4. Diferenční rovnice – posloupnost, diference posloupnosti, diferenční rovnice prvního řádu, diferenční rovnice vyšších řádů. 5. Posloupnosti a řady – posloupnost, řada čísel, konvergence řady, absolutní konvergence řady, divergence řady, kritéria konvergence.

Conditions for subject completion

Full-time form (validity from: 2008/2009 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation Credit 85  50
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2008/2009 (N6209) Systems Engineering and Informatics (6209T025) System Engineering and Informatics P Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner