151-0342/02 – Mathematics G (Mat G)
Gurantor department | Department of Mathematical Methods in Economics | Credits | 4 |
Subject guarantor | doc. Mgr. Marian Genčev, Ph.D. | Subject version guarantor | RNDr. Simona Pulcerová, Ph.D., MBA |
Study level | undergraduate or graduate | Requirement | Compulsory |
Year | 1 | Semester | winter |
| | Study language | Czech |
Year of introduction | 2006/2007 | Year of cancellation | 2009/2010 |
Intended for the faculties | EKF | Intended for study types | Bachelor |
Subject aims expressed by acquired skills and competences
The student will be able ...
• to interpret correctly the concept of the real function (one variable),
• to find the domain of real functions of one real variable (by means of solving systems of non-linear inequations),
• to characterize the basic properties of continuous functions,
• to explain the behavior of certain discontinuous functions,
• to compute and to interpret correctly the concept of limits of functions,
• to define and compute the derivative of a function,
• to interpret graphically the value of 1st and 2nd derivative of a function at a fixed point,
• to find and to determine the local extrema, points of inflextion, asymptotes and to interpret these concepts graphical and from the practival point of view,
• to control the basic rules for computing the antiderivative of a function,
• to explain the concept of definite integral (Darboux approach),
• to describe certain phenomenons with the help of the matrix algebra,
• to solve the systems of linear equations by means of Gauß' elimination technique.
Teaching methods
Lectures
Tutorials
Summary
The course Mathematics G extends the basic concepts of mathematics and introduces the most important concepts of higher mathematics, i.e., the concept of limit of a function at a fixed point and the derivative of a function (as a special case of limit). Similarly, the course introduces the concept of integration (indefinite and definite integration). All this techniques have extensive applications in economic theories. Moreover, the course discuss also the solvability of systems of linear equations which forms the starting point for description of many problems from economic branche.
Besides this facts, the student in the course should learn and fix the accuracy when arguing.
Compulsory literature:
[1] Larson R., Falvo C.D. Elementary Linear Algebra. Houghton Mifflin, Boston, New York, 2008.
[2] Tan T.S. Calculus: Multivariable Calculus. Brooks/Cole Cengage Learning, Belmont, 2010.
[3] Hoy M., Livernois J., McKenna Ch., Rees R., Stengos T. Mathematics for Economics. The MIT Press, London, 2011.
Recommended literature:
[1] Stewart J.S. Calculus - Concepts and Contexts. Cengage Learning, 2010.
[2] Canuto C., Tabacco A. Mathematical Analysis I. Springer Verlag, 2008.
[4] Luderer B., Nollau V., Vetters K. Mathematical Formulas for Economists. Springer Verlag, 3rd ed., 2007.
[5] Tan T.S. Calculus: Early Transcendentals. Brooks/Cole Cengage Learning, Belmont, 2011.
Additional study materials
Way of continuous check of knowledge in the course of semester
E-learning
Other requirements
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction