# 151-0400/03 – Mathematics A (MatKomb)

 Gurantor department Department of Mathematical Methods in Economics Credits 4 Subject guarantor RNDr. Pavel Rucki, Ph.D. Subject version guarantor RNDr. Danuše Bauerová, Ph.D. Study level undergraduate or graduate Study language Czech Year of introduction 2006/2007 Year of cancellation 2009/2010 Intended for the faculties EKF Intended for study types Bachelor
Instruction secured by
BAU20 RNDr. Danuše Bauerová, Ph.D.
HRU61 RNDr. Jana Hrubá, Ph.D.
SOB33 RNDr. Simona Pulcerová, Ph.D., MBA
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Part-time Credit 0+8

### Subject aims expressed by acquired skills and competences

Knowledge • Define the function of one variable. • Find the domain and range and basic properties. • Draw graphs of elementary functions. • Compute limits and derivates of functions. • Find the properties of no elementary functions a draw theirs graphs. • Obtain easier imagine about economic functions. Comprehension • Express economic dependences using a mathematical function. • Explain the slope of a function. • Restate the terms “concavity” and “convexity” into the “degressive” and “progressive”. • Generalise the functions on the dependences in the real live. Applications • Relate economic and mathematical functions. • Discover the tools suitable for describing of dependences in economics and other sciences. • Develop the technique of graphs drawing.

### Teaching methods

Lectures
Individual consultations
Other activities

### Summary

Taught in Czech only. The subject continues fulfilling general methodical and professional goals of Mathematics, i.e. to train the rational thinking and the ability to conceive and work with quantitative information concerning the real world. This is being done especially by mathematization of the practical as well as theoretical economic problems. This subject supplies the students’ education with realms of higher Mathematics which is applicable namely to the creation and investigation of economic models.

### Compulsory literature:

[1] SYDSAETER, K., HAMMOND, P. J. Mathematics for Economics Analysis. Pearson, 2002, ISBN 978-81-7758104-1. [2] HOY, M., LIVERNOIS, J., MCKENNA, Ch., REES, R., STENGOS, T. Mathematics for Economics. The MIT Press, London, 3rd edition, 2011, ISBN 978-0-262-01507-3. [3] TAN, T.S. Single variable calculus: early transcendentals. Brooks/Cole Cengage Learning, Belmont, 2011, ISBN 978-1-4390-4600-5.

### Recommended literature:

[1] LUDERER, B., NOLLAU, V., VETTERS, K. Mathematical Formulas for Economists. Springer Verlag, 3rd edition, 2006, ISBN 978-3540469018. [2] HOY, M., LIVERNOIS, J., MCKENNA, Ch., REES, R., STENGOS, T. Mathematics for Economics. The MIT Press, London, 3rd edition, 2011, ISBN 978-0-262-01507-3.

### Prerequisities

Subject has no prerequisities.

### Co-requisities

Subject has no co-requisities.

### Subject syllabus:

Témata výkladu zpracovaných v podobě multimediálních studijních opor: 1. Lineární algebra – Euklidovský prostor, vektory, lineární závislost a nezávislost vektorů, lineární kombinace vektorů, matice, operace s maticemi, hodnost matice, determinanty, inverzní matice, maticové rovnice, soustavy lineárních rovnic, Gaussova eliminační metoda. 2. Funkce jedné reálné proměnné – definice, definiční obor, obor hodnot, graf funkce, vlastnosti funkcí: funkce monotónní, omezená, sudá, lichá, periodická, prostá, složená, elementární funkce, inverzní funkce, cyklometrické funkce. 3. Limita funkce a posloupnosti – pravidla pro výpočet limit, limita funkce v nevlastním bodě, nevlastní limita, jednostranné limity, spojitost funkce, posloupnosti, limita posloupnosti. 4. Derivace funkce – geometrický a obecný význam derivace, pravidla derivování, derivace vyšších řádů, diferenciál, rovnice tečny a normály, L’Hospitalovo pravidlo. 5. Průběh funkce – extrémy funkce, intervaly monotónnosti, inflexní body, konvexnost, konkávnost, asymptoty grafu funkce, globální extrémy. Offline procvičování (samostatně, bez stálého online připojení k internetu, pod vedením tutora prostřednictvím Průvodce studiem a se soustavným využíváním studijních opor): Offline procvičování obsahově navazuje na témata výkladu. Organizačně je zařazeno do vzdělávání tak, aby byl zajištěn co nejefektivnější dopad na studující, tzn. procvičování prostupuje výkladem dle metodických a didaktických zásad.

### Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

### Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty

### Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

### Assessment of instruction

Předmět neobsahuje žádné hodnocení.