157-0372/01 – Optimization Methods (OM)

Gurantor departmentDepartment of Systems Engineering and InformaticsCredits6
Subject guarantordoc. Mgr. Ing. František Zapletal, Ph.D.Subject version guarantordoc. Mgr. Ing. František Zapletal, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageCzech
Year of introduction2015/2016Year of cancellation
Intended for the facultiesEKFIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
CHY0034 Mgr. Ing. Lucie Chytilová, Ph.D.
SIN0085 Ing. Markéta Šindlerová
SVA0158 Ing. Miloš Švaňa
TOL0013 prof. Mehdi Toloo, Ph.D.
VOL0133 Ing. Jan Volný
ZAP149 doc. Mgr. Ing. František Zapletal, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

Subject aims expressed by acquired skills and competences

The aim of the course is to present advanced optimization methods to students. In particular, an emphasis is put on optimization under risk and uncertainty and efficiency evaluation.

Teaching methods

Lectures
Tutorials

Summary

Students learn both the theoretical background and possibilities of applications in practice. They will get know how to define a mathematical optimization model when risk (stochastic programming) and uncertainty (fuzzy programming) are involved and how to solve these models using software (Solver, GAMS).

Compulsory literature:

SHAPIRO, Alexander, RUSZCZYNSKI, Andrzej a Darinka DENTCHEVA. Lectures on Stochastic Programming: Modeling and Theory, 2009. ISBN 978-0-89871-687-0. FIEDLER, Miroslav a kol. Linear optimization problems with inexact data. New York: Springer, 2006. ISBN 0-387-32697-9. PRÉKOPA, András. Stochastic programming. Dordrecht: Kluwer Academic Publishers, c1995. Mathematics and its applications, v. 324. ISBN 0-7923-3482-5.

Recommended literature:

TAHA, Hamdy A. Operations research: an introduction. 9. vyd. International ed. Upper Saddle River: Pearson, 2011. ISBN 978-0-13-139199-4. SHAPIRO, Alexander a Andrzej RUSZCZYŃSKI, ed. Stochastic programming. Amsterdam: Elsevier, 2003. Handbooks in operations research and management science, v. 10. ISBN 0-444-50854-6. VLACH, Milan a Jaroslav RAMÍK. Generalized concavity in fuzzy optimization and decision analysis. Boston: Kluwer Academic Publishers, c2002. International series in operations research & management science, 41. ISBN 0-7923-7495-9.

Way of continuous check of knowledge in the course of semester

Zápočet: - aktivní účast na cvičení - účast na cvičení alespoň 70 % - získání minimálně 23 bodů ze 45 Zkouška: - ústní

E-learning

Studijní opory TpB: https://lms.vsb.cz/course/view.php?id=72589 Studenti čerpají z povinné a doporučené literatury. Navíc mají k dispozici rozšířené podklady k přednáškám a sbírku řešených příkladů s komentáři.

Other requirements

Active attendance at seminars, study at home, study of mandatory literature, individual consultations.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1) Linear programming problems and their solving 2) Conditions for existence of an optimal solution 3) Stochastic programming - principles, presumptions, applications 4) Stochastic programming models without involving the risk measure 5) Stochastic programming - single stage model with probability constraints 6) Stochastic programming - penalization in the objective function 7) Stochastic programming - models with risk measures 8) Uncertainty and fuzzy sets, basics of fuzzy algebra. 9) Fuzzy optimization - possibilistic mean values, types of uncertainty, alpha-cut approach, possibility, and necessity measures. 10) Flexible programming 11) Introduction to Data Envelopment Analysis (DEA). 12) Basic DEA models and their assumptions.

Conditions for subject completion

Full-time form (validity from: 2015/2016 Winter semester, validity until: 2016/2017 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 45 (45) 23
                Zápočet (část 1) - dynamické programování Written test 20  10
                Zápočet (část 2) - stochastické a fuzzy programování Written test 25  13
        Examination Examination 55  28 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (N0688A050001) Information and Knowledge Management KM P Czech Ostrava 1 Compulsory study plan
2023/2024 (N0688A050001) Information and Knowledge Management KM P Czech Ostrava 1 Compulsory study plan
2022/2023 (N0688A050001) Information and Knowledge Management KM P Czech Ostrava 1 Compulsory study plan
2021/2022 (N0688A050001) Information and Knowledge Management KM P Czech Ostrava 1 Compulsory study plan
2020/2021 (N0688A050001) Information and Knowledge Management KM P Czech Ostrava 1 Compulsory study plan
2019/2020 (N6209) Systems Engineering and Informatics (6209T017) Informatics in Economics P Czech Ostrava 1 Compulsory study plan
2018/2019 (N6209) Systems Engineering and Informatics (6209T017) Informatics in Economics P Czech Ostrava 1 Compulsory study plan
2017/2018 (N6209) Systems Engineering and Informatics (6209T017) Informatics in Economics P Czech Ostrava 1 Compulsory study plan
2016/2017 (N6209) Systems Engineering and Informatics (6209T017) Informatics in Economics P Czech Ostrava 1 Compulsory study plan
2015/2016 (N6209) Systems Engineering and Informatics (6209T025) System Engineering and Informatics P Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2023/2024 Summer
2021/2022 Summer
2019/2020 Summer
2018/2019 Summer
2017/2018 Winter
2016/2017 Summer
2015/2016 Winter