221-0926/02 – Actions on Building Structures (ZSK)

Gurantor departmentDepartment of StructuresCredits2
Subject guarantordoc. Ing. Vít Křivý, Ph.D.Subject version guarantordoc. Ing. Vít Křivý, Ph.D.
Study levelundergraduate or graduate
Study languageCzech
Year of introduction1999/2000Year of cancellation
Intended for the facultiesFASTIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
FOJ085 doc. Ing. Roman Fojtík, Ph.D.
STA366 Ing. Marie Kozielová, Ph.D.
KRI10 doc. Ing. Vít Křivý, Ph.D.
PON0021 Ing. Lenka Kubíncová
ROS11 Ing. Miroslav Rosmanit, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Part-time Graded credit 12+0

Subject aims expressed by acquired skills and competences

After completing this subject, students will be able to understand and apply the following skills and topic areas: - principles of structural analysis with respect to the modeling of loads; - representation of loads using partial factors method; - permanent actions, imposed loads for buildings, snow and wind loads, thermal actions, actions induced by cranes and machinery actions during execution, accidental actions; - combination of actions.

Teaching methods

Lectures
Tutorials
Project work

Summary

1. Basis of structural design (principles of limit states design, basic variables, structural analysis). 2. Basis of structural design (partial factors method, combination of actions). 3. Self-weight, permanent actions, imposed loads for buildings. 4. Model example: reinforced concrete slab (modeling, analysis of actions, global analysis). 5. Model example: cantilever balcony beam (modeling, analysis of actions, global analysis). 6. Model example: stairs (modeling, analysis of actions, global analysis). 7. Snow load. 8. Wind load. 9. Example: Frame structure (analysis of actions, global analysis, combination of load effects). 10. Example: Timber duopitch roof (analysis of actions, global analysis, combination of load effects). 11. Thermal actions, actions during execution. 12. Actions induced by cranes and machinery. 13. Seismic actions. 14. Accidental actions (impact from vehicles, loads due to explosions).

Compulsory literature:

1. EN 1990 Eurocode: Basis of structural design. CEN, Brussels, 2004. 2. EN 1991-X Eurocode 1: Actions on structures . CEN, Brussels.

Recommended literature:

1. Handbook 1 - Basis of structural design. Leonardo da Vinci Pilot Project CZ/02/B/F/PP-134007, Prague, 2004. 2. Handbook 3 – Actions effects for buildings. Leonardo da Vinci Pilot Project CZ/02/B/F/PP-134007, Prague, 2005.

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

At least 70% attendance in the tutorial. Absence, up to a maximum of 30%, must be excused and accepted by the teacher (the teacher decides the reasonableness of the excuse). Tasks assigned in tutorial must be hand in within the deadline set by the teacher.

Prerequisities

Subject codeAbbreviationTitleRequirement
228-0201 SS Building statics Recommended
228-0204 PP Elasticity and Plasticity Recommended

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Basis of structural design (principles of limit states design, basic variables, structural analysis). 2. Basis of structural design (partial factors method, combination of actions). 3. Self-weight, permanent actions, imposed loads for buildings. 4. Model example: reinforced concrete slab (modeling, analysis of actions, global analysis). 5. Model example: cantilever balcony beam (modeling, analysis of actions, global analysis). 6. Model example: stairs (modeling, analysis of actions, global analysis). 7. Snow load. 8. Wind load. 9. Example: Frame structure (analysis of actions, global analysis, combination of load effects). 10. Example: Timber duopitch roof (analysis of actions, global analysis, combination of load effects). 11. Thermal actions, actions during execution. 12. Actions induced by cranes and machinery. 13. Seismic actions. 14. Accidental actions (impact from vehicles, loads due to explosions).

Conditions for subject completion

Part-time form (validity from: 2012/2013 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Graded exercises evaluation Graded credit 100  51 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2021/2022 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2020/2021 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2019/2020 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2018/2019 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2017/2018 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2016/2017 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2015/2016 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2014/2015 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2013/2014 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2012/2013 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2011/2012 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2010/2011 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2009/2010 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2008/2009 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2007/2008 (B3607) Civil Engineering (3607R999) Společné studium FAST K Czech Ostrava 2 Compulsory study plan
2006/2007 (B3651) Stavební inženýrství (3651R999) Společné studium FAST K Czech Ostrava 2 Compulsory study plan
2005/2006 (B3607) Civil Engineering (3607R999) Společné studium FAST K Czech Ostrava 2 Compulsory study plan
2005/2006 (B3651) Stavební inženýrství (3651R999) Společné studium FAST K Czech Ostrava 2 Compulsory study plan
2004/2005 (B3651) Stavební inženýrství (3651R999) Společné studium FAST K Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2019/2020 Summer
2018/2019 Summer
2017/2018 Summer
2016/2017 Summer
2015/2016 Summer
2011/2012 Summer
2010/2011 Summer
2009/2010 Summer