229-0101/04 – Building Environment (PSt)

Gurantor departmentDepartment of Building Environment and Building ServicesCredits5
Subject guarantordoc. Ing. Iveta Skotnicová, Ph.D.Subject version guarantordoc. Ing. Iveta Skotnicová, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year2Semesterwinter
Study languageCzech
Year of introduction2009/2010Year of cancellation2020/2021
Intended for the facultiesFASTIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
CER506 Ing. Marcela Černíková, Ph.D.
KOZ171 Ing. Michaela Černínová, Ph.D.
CHU0019 Ing. Blanka Chudíková
GAL04 Ing. Zdeněk Galda, Ph.D.
GER114 Ing. Pavel Gergela
ZDR074 Ing. Naďa Kudělová, Ph.D.
PAN083 Ing. Vladan Panovec, Ph.D.
ROD0027 Ing. Claudie Rodková
SKO80 doc. Ing. Iveta Skotnicová, Ph.D.
DON020 Ing. Denisa Valachová, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Examination 16+0

Subject aims expressed by acquired skills and competences

Student will acquire basic knowledge and skills in building thermal technology. He will learn to assess structures and buildings according regulative and standard requirements. He is able to solve elementary computational tasks using approximate and exact methods using special softwares and he will get the ability to design and evaluate the building structure in terms of thermal technical requirements.

Teaching methods

Lectures
Tutorials

Summary

The course deals with building thermal technology (thermal protection of buildings). Students will learn the main thermal technical requirements and computing procedures according to European and Czech standards. They will be able to propose additional measures to improve the thermal properties of buildings and to improve the energy efficiency of existing buildings.

Compulsory literature:

HENS, H. Applied Building Physics – Boundary Conditions, Building Performance and Material Properties. Berlin: Wilhelm Ernst Sohn, 2011. 308 p. ISBN 978-3-433-02962-6. HENS, H. Building Physics – Heat, Air and Moisture – Fundamentals and Engineering Methods with Examples And Exercises. 2nd Edition, Berlin: Wilhelm Ernst Sohn, 2012. 315 p. ISBN 978-3-433-03027-1. EN ISO 6946:2007 Building components and building elements -- Thermal resistance and thermal transmittance -- Calculation method. The Energy Performance of Buildings Directive (EPBD, Directive 2010/31/EU).

Recommended literature:

Roaf, S., Hancock, M. Energy Efficiency Building, Blackwell, Oxford 1992.

Way of continuous check of knowledge in the course of semester

Kontrolní test

E-learning

Není

Other requirements

At least 70% attendance at the exercises. Absence, up to a maximum of 30%, must be excused and the apology must be accepted by the teacher (the teacher decides to recognize the reason for the excuse). Tasks assigned on the exercises must be hand in within the dates set by the teacher.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lecture Warp: 1. Heat transfer processes of conduction, convection, radiation. Fourier's laws. Parameters of internal and external microclimate. 2. Building materials and their thermal properties – density, thermal conductivity coefficient, specific heat kapacity, diffusion conductivity factor. 3. Heat transfer – thermal resistence, U-value (Heat thermal transmittance value). 4. The lowest internal surface temperature. Temperature factor at the internal surface. 5. Thermal bridges and connections. Two-dimensional heat flow. 6. Linear and point thermal transmittance. 7. Humidity transfer - vapour diffusion, diffusion resistance, factor of diffusion resistance, balance of condensation and evaporation. 8. Air transfer - air permeability, coefficient of lenth join air permeability, space rate changing air. 9. Unsteady heat transfer – drop of contact temperature. 10. Thermal stability of the rooms in winter and summer conditions. 11. Heat transfer of building envelope - average transmission heat loss coefficient (average U-value). 12. Energy consumption. Building energy certificate. 13. Thermotechnical design of structural elements and buildings. 14. Thermotechnical survey of buildings. Low energy and passive buildings. Exercises Warp: 1. Parameters of internal and external microclimate. Measuring of temperature and humidity of air. 2. Building materials and their thermal properties – measuring of density, thermal conductivity coefficient, specific heat kapacity, diffusion conductivity factor. Aword programme. 3. Calculations of thermal resistence and U-value for homogeneous constructions (one-dimensional heat flow). 4. Calculations of thermal resistence and U-value for constructions with thermal bridges (two-dimensional heat flow) – approximate methods. 5. Calculations of thermal resistence and U-value for constructions with thermal bridges (two-dimensional heat flow) – exact methods. 6. Calculations of temperature factor at the internal surface for homogeneous constructions and constructions with thermal bridges. 7. Linear and point thermal transmittance – calculation method of solving temperature field. 8. Calculation of balance of condensation and evaporation. 9. Calculation of drop of contact temperature. 10. Measuring of air transfer (blower door test). 11. Thermal stability of the rooms in winter and summer conditions. 12. Calculation of heat transfer of building envelope. 13. Calculation of energy consumption. Building energy certificate. 14. Credit

Conditions for subject completion

Part-time form (validity from: 2009/2010 Winter semester, validity until: 2020/2021 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Examination Examination 100  51 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2019/2020 (B3607) Civil Engineering P Czech Ostrava 1 Compulsory study plan
2019/2020 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2018/2019 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2018/2019 (B3607) Civil Engineering P Czech Ostrava 1 Compulsory study plan
2017/2018 (B3607) Civil Engineering P Czech Ostrava 1 Compulsory study plan
2017/2018 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2016/2017 (B3607) Civil Engineering P Czech Ostrava 1 Compulsory study plan
2016/2017 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2015/2016 (B3607) Civil Engineering P Czech Ostrava 1 Compulsory study plan
2015/2016 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2014/2015 (B3607) Civil Engineering P Czech Ostrava 1 Compulsory study plan
2014/2015 (B3607) Civil Engineering P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3607) Civil Engineering K Czech Ostrava 1 Compulsory study plan
2014/2015 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2013/2014 (B3607) Civil Engineering P Czech Ostrava 2 Compulsory study plan
2013/2014 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2012/2013 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2012/2013 (B3607) Civil Engineering P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3607) Civil Engineering P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2010/2011 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan
2010/2011 (B3607) Civil Engineering P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3607) Civil Engineering P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3607) Civil Engineering K Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
ECTS FCE Bc-Mgr 2016/2017 Full-time English Choice-compulsory 200 - Faculty of Civil Engineering - Dean's Office stu. block
ECTS FCE Bc-Mgr 2015/2016 Full-time English Choice-compulsory 200 - Faculty of Civil Engineering - Dean's Office stu. block
ECTS FCE Bc-Mgr 2014/2015 Full-time Czech Choice-compulsory 200 - Faculty of Civil Engineering - Dean's Office stu. block
ECTS FCE Bc-Mgr 2013/2014 Full-time Czech Choice-compulsory 200 - Faculty of Civil Engineering - Dean's Office stu. block
ECTS FCE Bc-Mgr 2012/2013 Full-time Czech Choice-compulsory 200 - Faculty of Civil Engineering - Dean's Office stu. block

Assessment of instruction



2018/2019 Summer
2017/2018 Summer
2016/2017 Summer
2015/2016 Summer
2014/2015 Winter
2013/2014 Winter
2012/2013 Winter
2011/2012 Winter
2010/2011 Winter
2009/2010 Winter