230-0302/02 – Mathematics II (MII)
Gurantor department | Department of Mathematics | Credits | 5 |
Subject guarantor | Mgr. Jakub Stryja, Ph.D. | Subject version guarantor | Mgr. Jakub Stryja, Ph.D. |
Study level | undergraduate or graduate | Requirement | Compulsory |
Year | 1 | Semester | summer |
| | Study language | Czech |
Year of introduction | 2019/2020 | Year of cancellation | |
Intended for the faculties | FBI | Intended for study types | Bachelor |
Subject aims expressed by acquired skills and competences
Mathematics is essential part of education on technical universities. It should be considered rather the method in the study of technical courses than a goal. Thus the goal of mathematics is train logical reasoning than mere list of mathematical notions, algorithms and methods.
Students should learn how to:
analyze problems,
distinguish between important and unimportant,
suggest a method of solution,
verify each step of a method,
generalize achieved results,
analyze correctness of achieved results with respect to given conditions,
apply these methods while solving technical problems,
understand that mathematical methods and theoretical advancements outreach
the field matematics.
Teaching methods
Lectures
Individual consultations
Tutorials
Other activities
Summary
Indefinite integral, some properties, elementary methods of integration. The
differential calculus of functions of two variables,the partial derivations,
extremes of functions of two variables. Ordinary differential equations,first
order differential equations, types of solution, separable, homogenous and
linear equations. Linear equations of the 2nd order with constant coefficients.
Compulsory literature:
Recommended literature:
Way of continuous check of knowledge in the course of semester
Podmínky absolvování předmětu
Podmínky pro udělení zápočtu (prezenční studium):
- účast ve cvičení, 20 % neúčasti lze omluvit,
- odevzdání programů zadaných vedoucím cvičení v předepsané úpravě,
- absolvování písemných testů, každý test je možno jednou opravit.
Za splnění podmínek získá student 5 bodů.
Za testy může získat student 0 - 15 bodů.
(Student, který získá zápočet, bude hodnocen 5 - 20 bodů).
Podmínky pro udělení zápočtu (kombinované studium):
Za účast na konzultacích může student získat 5 - 20 bodů, v případě neúčasti může student získat 5 bodů za zpracování zadaného programu.
Požadavky ke zkoušce:
Podmínkou pro účast na zkoušce je zapsaný zápočet z příslušného předmětu.
Písemná část zkoušky bude hodnocena 0 - 60 body, za její úspěšné absolvování bude považován zisk 25 bodů.
Ústní část zkoušky bude hodnocena 0 - 20 body, za její úspěšné absolvování bude považován zisk 5 bodů.
Po sečtení bodů získaných za zápočet, písemnou a ústní část zkoušky bude student hodnocen výborně, velmi dobře, dobře a nevyhověl, podle tabulky studijního a zkušebního řádu VŠB - TUO.
Pro zapsání zkoušky podle tabulky musí student úspěšně absolvovat obě části kombinované zkoušky a dosáhnout potřebného počtu bodů.
Bodové hodnocení:
86 - 100 výborně
66 - 85 velmi dobře
51 - 65 dobře
0 - 50 nevyhověl
Soubor otázek k teoretické části zkoušky
1. Primitivní funkce a neurčitý integrál
2. Integrace neurčitého integrálu substitucí
3. Integrace neurčitého integrálu metodou per partes
4. Integrace funkce racionální lomené.
5. Integrace goniometrických funkcí
6. Integrace iracionálních funkcí, vyšší transcendentní funkce.
7. Pojem Riemannova určitého integrálu
8. Vlastnosti Riemannnových určitých integrálů
9. Substituce v určitém integrálu
10. Geometrické aplikace určitého integrálu
11. Určení obsahu rovinné plochy
12. Určení objemu rotačního tělesa
13. Určení délky křivky
14. Určení povrchu rotační plochy
15. Funkce více proměnných – definice, definiční obor, graf
16. Parciální derivace funkce více proměnných
17. Totální diferenciál funkce více proměnných
18. Rovnice tečné roviny a normály k ploše
19. Extrémy funkce více proměnných
20. Obyčejné diferenciální rovnice
21. Typy řešení diferenciálních rovnic
22. Diferenciální rovnice se separovanými proměnnými
23. Separovatelná diferenciální rovnice
24. Homogenní diferenciální rovnice
25. Lineární diferenciální rovnice 1. řádu, metoda variace konstanty
26. Cauchyho úloha
27. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty - metoda variace konstant
28. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty - metoda neurčitých koeficientů
E-learning
http://www.studopory.vsb.cz
http://mdg.vsb.cz
Other requirements
No more requirements are put on the student.
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
Syllabus of lecture
I Integral calculus of functions of one variable
Antiderivatives and indefinite integral. Integration of elementary functions, integration by substitutions, integration by parts, integration of rational functions, definite integral and methods of integration, Geometric and physical application of definite integrals.
II Differential calculus of functions of two or more real variables Functions of two or more variables, graph, partial derivatives of the 1-st and higher order, total differential of functions of two variables, tangent plane and normal to a surface, extremes of functions.
III Ordinary differential equations
General, particular and singular solutions, separable homogeneous equations, homogeneous equations, linear differential equations of the first order, method of variation of arbitrary constant, 2nd order linear differential equations with constant coefficients, linearly independent solutions, Wronskian, fundamental system of solutions,
2nd order LDE with constant coefficients - method of variation of arbitrary constants,
method of undetermined coefficients, application of differential equations.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction