230-0304/02 – Engineering Mathematics (IM)

Gurantor departmentDepartment of MathematicsCredits5
Subject guarantorMgr. Jakub Stryja, Ph.D.Subject version guarantorMgr. Jakub Stryja, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2019/2020Year of cancellation
Intended for the facultiesFBIIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
STR78 Mgr. Jakub Stryja, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Part-time Credit and Examination 14+0

Subject aims expressed by acquired skills and competences

The goal of mathematics is train logical reasoning than mere list of mathematical notions, algorithms and methods. Students should learn how to analyze problems, distinguish between important and unimportant, suggest a method of solution and verify each step of an algorithm, generalize achieved results, analyze correctness of results with respect to given conditions, apply these methods while solving technical problems.

Teaching methods

Lectures
Individual consultations
Tutorials

Summary

Double and triple integrals and their applications. Line integral and its applications. Infinite series, power series.

Compulsory literature:

Kučera, Radek: Mathematics III, VŠB – TUO, Ostrava 2005, ISBN 80-248-0802-1

Recommended literature:

Harshbarger, Ronald; Reynolds, James: Calculus with Applications, D.C. Heath and Company 1990 James, G.: Modern Engineering Mathematics. Addison-Wesley, 1992. ISBN 0-201-1805456

Way of continuous check of knowledge in the course of semester

Podmínky absolvování předmětu Podmínky pro udělení zápočtu (kombinované studium): Za účast na konzultacích v rozsahu 50 - 100 % může student získat 10 – 20 bodů, v případě účasti nižší může student získat 5 bodů za zpracování zadaného programu. Celkem maximálně 20 bodů Požadavky ke zkoušce: Podmínkou pro účast na zkoušce je zapsaný zápočet z příslušného předmětu. Praktická část zkoušky bude hodnocena 0 - 60 body, za její úspěšné absolvování bude považován zisk minimálně 25 bodů. Teoretická část zkoušky bude hodnocena 0 - 20 body, za její úspěšné absolvování bude považován zisk minimálně 5 bodů. Po sečtení bodů získaných za zápočet, písemnou a ústní část zkoušky bude student hodnocen výborně, velmi dobře, dobře a nevyhověl, podle tabulky studijního a zkušebního řádu VŠB - TUO. Pro zapsání zkoušky podle tabulky musí student úspěšně absolvovat obě části kombinované zkoušky a dosáhnout potřebného počtu bodů. Bodové hodnocení: 86 - 100 výborně 66 - 85 velmi dobře 51 - 65 dobře 0 - 50 nevyhověl Soubor otázek k teoretické části zkoušky 1. Dvojrozměrný integrál v obdélníku. 2. Dvojrozměrný integrál v obecné uzavřené oblasti. 3. Transformace dvojrozměrného integrálu. 4. Užití dvojrozměrných integrálů. 5. Trojrozměrný integrál v kvádru. 6. Trojrozměrný integrál v obecné uzavřené oblasti. 7. Užití trojrozměrných integrálů. 8. Pojem křivkového integrálu I. druhu, vlastnosti a výpočet. 9. Pojem křivkového integrálu II. druhu, vlastnosti a výpočet. 10. Greenova věta. 11. Nezávislost křivkových integrálů na integrační cestě. 12. Nekonečné číselné řady - definice, konvergence, divergence. 13. Nutná podmínka konvergence řad, kriteria konvergence řad s nezápornými členy 14. Nekonečná geometrická řada, řada harmonická, zobecněná harmonická a Leibnizova. 15. Funkční řady - definice, obor konvergence.

E-learning

http://www.studopory.vsb.cz http://mdg.vsb.cz

Other requirements

There are no more requirements.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Integral calculus of functions of several independent variables. 1. Two-dimensional integrals on coordinate rectangle, on bounded subset of R2, transformation - polar coordinates, geometrical and physical applications 2. Three-dimensional integrals on coordinate cube, on bounded subset of R3, transformation - cylindrical and spherical coordinates, geometrical and physical applications 3. Line integral of the first and of the second kind, Green´s theorem, potential , geometrical and physical applications. 4. Infinite number series 5. Infinite series of functions.

Conditions for subject completion

Part-time form (validity from: 2019/2020 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 20  5
        Examination Examination 80 (80) 30 3
                Písemná zkouška Written examination 60  25
                Ústní zkouška Oral examination 20  5
Mandatory attendence participation: At least 70% attendance at the exercises. Absence, up to a maximum of 30%, must be excused and the apology must be accepted by the teacher (the teacher decides to recognize the reason for the excuse).

Show history

Conditions for subject completion and attendance at the exercises within ISP: Mandatory participation in the course is not required. Other conditions for subject completion will respect the individual needs of the student.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (N1032A020001) Safety and Security Planning K Czech Ostrava 1 Compulsory study plan
2023/2024 (N1032A020001) Safety and Security Planning K Czech Ostrava 1 Compulsory study plan
2022/2023 (N1032A020001) Safety and Security Planning K Czech Ostrava 1 Compulsory study plan
2022/2023 (N3908) Fire Protection and Industrial Safety (3908T005) Engineering Safety of Persons and Property K Czech Ostrava 1 Compulsory study plan
2022/2023 (N3908) Fire Protection and Industrial Safety K Czech Ostrava 1 Compulsory study plan
2022/2023 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Praha 1 Compulsory study plan
2022/2023 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Ostrava 1 Compulsory study plan
2021/2022 (N1032A020001) Safety and Security Planning K Czech Ostrava 1 Compulsory study plan
2021/2022 (N3908) Fire Protection and Industrial Safety (3908T005) Engineering Safety of Persons and Property K Czech Ostrava 1 Compulsory study plan
2021/2022 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Ostrava 1 Compulsory study plan
2021/2022 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Praha 1 Compulsory study plan
2020/2021 (N1032A020001) Safety and Security Planning K Czech Ostrava 1 Compulsory study plan
2020/2021 (N3908) Fire Protection and Industrial Safety (3908T005) Engineering Safety of Persons and Property K Czech Ostrava 1 Compulsory study plan
2020/2021 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan
2020/2021 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Ostrava 1 Compulsory study plan
2020/2021 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Praha 1 Compulsory study plan
2019/2020 (N3908) Fire Protection and Industrial Safety (3908T005) Engineering Safety of Persons and Property K Czech Ostrava 1 Compulsory study plan
2019/2020 (N3908) Fire Protection and Industrial Safety (3908T007) Safety and Security Planning K Czech Ostrava 1 Compulsory study plan
2019/2020 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Ostrava 1 Compulsory study plan
2019/2020 (N3908) Fire Protection and Industrial Safety (3908T006) Fire Protection Engineering and Industrial Safety K Czech Praha 1 Compulsory study plan
2019/2020 (N3908) Fire Protection and Industrial Safety (3908T002) Safety Engineering K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
Subject block without study plan - FBI - K - cs 2021/2022 Part-time Czech Optional FBI - Faculty of Safety Engineering stu. block

Assessment of instruction



2022/2023 Winter
2020/2021 Winter
2019/2020 Winter