230-0441/01 – Deskriptivní geometrie (DG)
Garantující katedra | Katedra matematiky | Kredity | 5 |
Garant předmětu | Mgr. Dagmar Dlouhá, Ph.D. | Garant verze předmětu | Mgr. Dagmar Dlouhá, Ph.D. |
Úroveň studia | pregraduální nebo graduální | Povinnost | povinný |
Ročník | 1 | Semestr | letní |
| | Jazyk výuky | čeština |
Rok zavedení | 2019/2020 | Rok zrušení | |
Určeno pro fakulty | HGF | Určeno pro typy studia | bakalářské |
Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi
• pěstovat rozvoj prostorové představivosti
• ovládat různé druhy zobrazovacích metod, rozumět jejich principům, znát jejich vlastnosti, výhody a nevýhody
• obeznámit se s geometrickými vlastnostmi křivek a ploch užívaných v technické praxi daného oboru
Vyučovací metody
Přednášky
Individuální konzultace
Cvičení (v učebně)
Ostatní aktivity
Anotace
Deskriptivní geometrie je praktická disciplína, která se snaží svými metodami a svou stavbou význačně přispět k rozvoji prostorové představivosti, tvůrčích schopností a logického myšlení.
V první části seznamuje studenty se všemi běžně užívanými zobrazovacími metodami, které mohou být užitečné pro praxi technika. U grafických prací je preferováno ruční rýsování, při němž mohou studenti prokázat svůj smysl pro přesnost, trpělivost, poctivost a estetické cítění.
Povinná literatura:
Doporučená literatura:
Forma způsobu ověření studijních výsledků a další požadavky na studenta
Podmínky pro udělení zápočtu je účast ve cvičení, 30 % neúčasti lze omluvit, odevzdání programů zadaných vedoucím cvičení v předepsané úpravě. Za splnění podmínek může získat student 0 - 20 b. (Student, který získá zápočet, bude hodnocen 5 - 20 b).
Podmínkou pro účast na zkoušce je zapsaný zápočet z příslušného předmětu. Zkouška se skládá z písemné a ústní části. Student musí úspěšně absolvovat obě části zkoušky a dosáhnout potřebného počtu bodů.
E-learning
Další požadavky na studenta
Další požadavky na studenta nejsou kladeny.
Prerekvizity
Předmět nemá žádné prerekvizity.
Korekvizity
Předmět nemá žádné korekvizity.
Osnova předmětu
1. Nevlastní prvky. Kuželosečky - základní pojmy a ohniskové vlastnosti.
2. Konstrukce elipsy, hyperboly a paraboly z daných prvků.
3. Základní vlastnosti promítání. Promítání rovnoběžné.
4. Středová kolineace a osová afinita v rovině.
5. Kótované promítání – zobrazení bodu, přímky, roviny.
6. Kótované promítání – úlohy polohy.
7. Kótované promítání – úlohy metrické.
8. Afinní vztah kružnice a elipsy. Průmět kružnice v kótovaném promítání.
9. Pravoúhlá axonometrie. Úlohy polohy.
10. Úlohy metrické a průmět kružnice v souřadnicových rovinách.
11. Elementární plochy a tělesa. Základní pojmy a vlastnosti.
12. Rovinný řez. Průsečíky s přímkou. Tečná rovina.
13. Topografické plochy.
14. Rezerva.
Podmínky absolvování předmětu
Výskyt ve studijních plánech
Výskyt ve speciálních blocích
Hodnocení Výuky