310-2112/04 – Matematika II (MII)
Garantující katedra | Katedra matematiky a deskriptivní geometrie | Kredity | 4 |
Garant předmětu | Ing. Petra Schreiberová, Ph.D. | Garant verze předmětu | RNDr. Jan Kotůlek, Ph.D. |
Úroveň studia | pregraduální nebo graduální | Povinnost | povinný |
Ročník | 1 | Semestr | letní |
| | Jazyk výuky | angličtina |
Rok zavedení | 2019/2020 | Rok zrušení | |
Určeno pro fakulty | FS | Určeno pro typy studia | bakalářské |
Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi
Cílem kurzu je využít znalostí, které studenti získali v předmětu Matematika 1, k seznámení se se základy integrálního počtu funkce jedné proměnné, diferenciálního počtu funkce dvou proměnných a k řešení obyčejných diferenciálních rovnic.
Vyučovací metody
Přednášky
Individuální konzultace
Cvičení (v učebně)
Ostatní aktivity
Anotace
V předmětu jsou obsaženy tři kapitoly - integrální počet funkce jedné reálné proměnné, úvod do diferenciálního počtu funkce dvou reálných proměnných a obyčejné diferenciální rovnice. Cílem první kapitoly je zvládnutí základní techniky integrování a především seznámení s geometrickými aplikacemi určitého integrálu. Druhá kapitola se velmi stručně zabývá základy diferenciálního počtu funkcí dvou proměnných, vytvořením geometrické představy o grafu, určením lokálních extrémů a tečné roviny k ploše. Třetí kapitola seznamuje se základními typy obyčejných diferenciálních rovnic a jejich řešením.
Povinná literatura:
Doporučená literatura:
Další studijní materiály
Forma způsobu ověření studijních výsledků a další požadavky na studenta
zápočet - odevzdání programů, 3 písemné testy
zkouška - kombinovaná
E-learning
http://mdg.vsb.cz/portal/m2/index.php
Další požadavky na studenta
Další požadavky na studenta nejsou.
Prerekvizity
Korekvizity
Předmět nemá žádné korekvizity.
Osnova předmětu
1 Integrální počet funkce jedné proměnné. Primitivní funkce a neurčitý
integrál. Integrace elementárních funkcí.
2 Integrace substitucí - základní typy substitucí.Integrace per partes.
3 Integrace funkce racionální lomené.
4 Určitý integrál a metody jeho výpočtu.
5 Geometrické aplikace určitého integrálu.
6 Diferenciální počet funkcí více proměnných. Funkce více proměnných,
její graf, parciální derivace prvního a vyšších řádů.
7 Totální diferenciál, tečná rovina a normála k ploše.
8 Extrémy funkce.
9 Obyčejné diferenciální rovnice. Obecné, partikulární a výjimečné
řešení. Separovatelné rovnice.
10 Homogenní a exaktní rovnice. Lineární rovnice 1. řádu - metoda variace
konstant.
11 Lineární diferenciální rovnice vyšších řádů s konstantními koeficienty.
Lineárně nezávislá řešení. Wronskián. Fundamentální systém řešení.
12 Metoda neurčitých koeficientů.
13 Lagrangeova metoda variace konstant.
Podmínky absolvování předmětu
Výskyt ve studijních plánech
Výskyt ve speciálních blocích
Hodnocení Výuky