310-3141/02 – Mathematics IV (MIV)

Gurantor departmentDepartment of Mathematics and Descriptive GeometryCredits5
Subject guarantordoc. RNDr. Jarmila Doležalová, CSc.Subject version guarantorMgr. Jiří Krček
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2019/2020Year of cancellation
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
DOL30 doc. RNDr. Jarmila Doležalová, CSc.
KRC76 Mgr. Jiří Krček
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Combined Credit and Examination 16+4

Subject aims expressed by acquired skills and competences

Mathematics is essential part of education on technical universities. It should be considered rather the method in the study of technical courses than a goal. Thus the goal of mathematics is train logical reasoning than mere list of mathematical notions, algorithms and methods. Students should learn how to analyze problems, distinguish between important and unimportant, suggest a method of solution, verify each step of a method, generalize achieved results, analyze correctness of achieved results with respect to given conditions, apply these methods while solving technical problems, understand that mathematical methods and theoretical advancements outreach the field mathematics.

Teaching methods

Lectures
Individual consultations
Tutorials
Other activities

Summary

Systems of n ordinary linear differential equations of the first order for n functions: definition, representation at matrix form, methods of solution of systems of 2 equations for 2 functions, Euler method for homogeneous systems of n equations for n functions. Integral calculus of functions of several independent variables: two-dimensional integrals, three-dimensional integrals, vector analysis, line integral of the first and the second kind, surface integral of the first and second kind. Infinite series: number series, series of functions, power series.

Compulsory literature:

Harshbarger, R.J.-Reynolds, J.J.: Calculus with Applications. D.C.Heath and Company, Lexington1990, ISBN 0-669-21145-1 James, G.: Modern Engineering Mathematics. Addison-Wesley, 1992. ISBN 0-201-1805456

Recommended literature:

Harshbarger, R.J.-Reynolds, J.J.: Calculus with Applications. D.C.Heath and Company, Lexington1990, ISBN 0-669-21145-1 James, G.: Modern Engineering Mathematics. Addison-Wesley, 1992. ISBN 0-201-1805456 James, G.: Advanced Modern Engineering Mathematics. Addison-Wesley, 1993. ISBN 0-201-56519-6

Way of continuous check of knowledge in the course of semester

Zápočet Za účast na konzultacích v rozsahu 50 - 100 % může student získat 10 – 20 bodů, v případě účasti nižší může student získat 5 bodů za zpracování zadaného programu. Celkem maximálně 20 bodů Zkouška Kombinovanou zkoušku tvoří praktická část (60 minut, příklady) a teoretická část (20 minut, teoretické otázky). Praktická část je hodnocena 0 - 60 body, teoretická část 0 - 20 body. Aby student u zkoušky uspěl musí získat v praktické části nejméně 25 bodů a v teoretické části nejméně 5 bodů. klasifikace získané body známka 86 - 100 výborně 66 - 85 velmi dobře 51 - 65 dobře 0 - 50 nevyhověl Otázky k teoretické části zkoušky Soustavy LDR I. řádu - zápis, řešení, fundamentální systém řešení. Eliminační metoda řešení soustav LDR. Eulerova metoda řešení soustav LDR. Dvojný integrál na souřadnicovém pravoúhelníku - výpočet a vlastnosti. Dvojný integrál na obecné regulární oblasti - výpočet a vlastnosti. Transformace v dvojném integrálu. Aplikace dvojného integrálu. Trojný integrál na souřadnicovém kvádru - výpočet a vlastnosti. Trojný integrál na obecné regulární oblasti - výpočet a vlastnosti. Transformace v trojném integrálu. Aplikace trojného integrálu. Skalární pole a jeho popis. Gradient a jeho vlastnosti. Vektorové pole - definice, typy a popis. Operátorové vyjádření gradientu, divergence a rotace. Křivka a její orientace, zápis (parametrické a vektorová rovnice). Křivkový integrál I. druhu - výpočet a vlastnosti Greenova věta. Nezávislost křivkového integrálu na integrační cestě. Nekonečné číselné řady - definice, konvergence, divergence. Nutná podmínka konvergence řad. Nekonečná geometrická řada. Řada harmonická, zobecněná harmonická a Leibnizova. Funkční řady - definice, obor konvergence.

E-learning

http://www.studopory.vsb.cz http://mdg.vsb.cz

Další požadavky na studenta

There are no more requirements.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Syllabus of lecture 1 Systems of n ordinary linear differential equations of the first order for n functions: definition, representation at matrix form, methods of solution of systems of 2 equations for 2 functions, Euler method for homogeneous systems of n equations for n functions 2 Integral calculus of functions of several independent variables: two-dimensional integrals on coordinate rectangle, on bounded subset of R2, transformation - polar coordinates, geometrical and physical applications 3 Three-dimensional integrals on coordinate cube, on bounded subset of R3, transformation - cylindrical and spherical coordinates, geometrical and physical applications 4 Vector analysis, gradient, divergence, rotation 5 Line integral of the first and of the second kind, Green´s theorem, potential , geometrical and physical applications 6 Infinite number series 7 Infinite series of functions, power series

Conditions for subject completion

Combined form (validity from: 2019/2020 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 20  5
        Examination Examination 80 (80) 31
                Písemná zkouška Written examination 60  25
                Ústní zkouška Oral examination 20  5
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2019/2020 (N2301) Mechanical Engineering (3901T003) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3902T004) Automatic Control and Engineering Informatics K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2301T003) Transport Equipment and Technology (10) Rail Transport K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2301T003) Transport Equipment and Technology (20) Road Transport K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2301T003) Transport Equipment and Technology (30) Transport Technology K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2302T043) Hydraulics and Pneumatics K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3909T001) Design and Process Engineering (35) Transport Equipment and Material Handling K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3909T001) Design and Process Engineering (72) Technical Diagnostics, Repairs and Maintenance K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3909T001) Design and Process Engineering (20) Production Machines and Equipment K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3909T001) Design and Process Engineering (70) Earth, Mining and Building Machines K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (6208T116) Industrial Engineering K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2301T013) Robotics K Czech Ostrava 1 Compulsory study plan
2019/2020 (N0715A270008) Industrial Engineering K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner