330-0316/02 – Metoda konečných prvků 1 (MKP1)

Garantující katedraKatedra aplikované mechanikyKredity5
Garant předmětudoc. Ing. Martin Fusek, Ph.D.Garant verze předmětuprof. Ing. Radim Halama, Ph.D.
Úroveň studiapregraduální nebo graduální
Jazyk výukyangličtina
Rok zavedení2016/2017Rok zrušení2021/2022
Určeno pro fakultyFSUrčeno pro typy studiabakalářské
Výuku zajišťuje
Os. čís.JménoCvičícíPřednášející
FUS76 doc. Ing. Martin Fusek, Ph.D.
HAL22 prof. Ing. Radim Halama, Ph.D.
MAW007 doc. Ing. Pavel Maršálek, Ph.D.
POR05 doc. Ing. Zdeněk Poruba, Ph.D.
ROJ71 Ing. Jaroslav Rojíček, Ph.D.
Rozsah výuky pro formy studia
Forma studiaZp.zak.Rozsah
prezenční Zápočet a zkouška 2+2
kombinovaná Zápočet a zkouška 12+8

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Naučit studenty teoretické základy metody konečných prvků (MKP) a postupy při řešení úloh pružnosti a pevnosti s využitím této numerické metody. Zajistit pochopení probírané látky. Naučit studenty řešit vybrané úlohy z technické praxe.

Vyučovací metody

Přednášky
Cvičení (v učebně)
Projekt

Anotace

Předmět tvoří základ pro využívání metody konečných prvků v technické praxi. Formuluje nelineární aparát mechaniky kontinua. Obsahem jsou obecné formulace mechaniky kontinua, základy linearizace, úvod do variačních metod, konečně aplikace MKP na konkrétní typy úloh lineární pružnosti.

Povinná literatura:

[1] FUSEK, Martin, ROJÍČEK, Jaroslav, Metoda konečných prvků I [online], Ostrava: VŠB-TU Ostrava, 2013, ISBN 978-80-248-3023-0, Dostupné z: http://projekty.fs.vsb.cz/463/edubase/VY_01_010/ [2] LENERT, Jiří. Úvod do metody konečných prvků. Ostrava: VŠB-Technická univerzita, 1999. ISBN 80-7078-686-8. [3] SZWEDA, Jan, Zdeněk PORUBA, Roman SIKORA a Ondřej FRANTIŠEK. Matematika v pozadí inženýrských úloh [online]. Ostrava: VŠB-TU Ostrava, 2012 [cit. 2018-01-11]. Dostupné z: http://mi21.vsb.cz/modul/matematika-v-pozadi-reseni-inzenyrskych-uloh [4] ZIENKIEWICZ, O. C., TAYLOR,R.L. a ZHU, J.Z. The finite element method: its basis and fundamentals. 6th ed. Oxford: Elsevier Butterworth-Heinemann, 2005. ISBN 0-7506-6320-0. [5] LENERT,J. Základy matematické teorie pružnosti. 1. vyd. Ostrava : VŠB-TU, 1997. 96 s. ISBN 80-7078-437-7

Doporučená literatura:

[1] FUSEK, Martin, MKP v Nastranu a Patranu [online], Ostrava: VŠB-TU Ostrava, 2011, ISBN 978-80-248-2730-8, Dostupné z: http://projekty.fs.vsb.cz/147/ucebniopory/978-80-248-2730-8.pdf [2] FUSEK, Martin, Týmová cvičení předmětu MKP I [online], Ostrava: VŠB-TU Ostrava, 2011, ISBN 978-80-248-2729-2, Dostupné z: http://projekty.fs.vsb.cz/147/ucebniopory/978-80-248-2729-2.pdf [3] KOLÁŘ, Vladimír, Ivan NĚMEC a Viktor KANICKÝ. FEM: principy a praxe metody konečných prvků. Praha: Computer Press, 1997. ISBN 80-7226-021-9. [4] BITTNAR,Z.-ŠEJNOHA,J. Numerické metody mechaniky 1. Praha : Vydavatelství ČVUT, 1992. 310 s. ISBN 80-01-00855-X. [5] BITTNAR,Z.-ŠEJNOHA,J. Numerické metody mechaniky 2. Praha : Vydavatelství ČVUT, 1992. 261 s. ISBN 80-01-00901-7. [6] BEER,G.-WATSON,J.O. Introduction to Finite and Boundary Element Methods for Engineers. John Wiley & Sons, 1992, 509p.ISBN 0 471 92813 5 [7] MADENCI, Erdogan. a Ibrahim. GUVEN. The finite element method and applications in engineering using ANSYS. New York: Springer, c2006. ISBN 0-387-28289-0.

Forma způsobu ověření studijních výsledků a další požadavky na studenta

test, příklady řešení

E-learning

ne

Další požadavky na studenta

Předmět zahrnuje výklad základů MKP pro lineární strukturální problémy a má praktické zaměření:

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.

Osnova předmětu

Předmět zahrnuje výklad základů MKP pro lineární strukturální problémy a má praktické zaměření: 1. cvičení – Základní myšlenka MKP. Volba interpolačních funkcí. Typy prvků. Odvození matice tuhosti tyčového prvku. Rovnice matematické teorie pružnosti. Princip minima potenciální energie. Postup při výpočtu MKP. Podmínky kovergence. 2. cvičení – Sestavení globální matice tuhosti a vektoru pravé strany. Základy Ansys Workbench (popis jednotlivých modulů, práce s helpem). Příklad 1: Aplikační příklad – nosník ve 3D. 3. cvičení – Výpočtové modelování. Zjednodušení úloh z 3D na 1D a 2D. Příklad 2: maticový klíč. 4. cvičení – Volba okrajových podmínek. Singularity. Načtení geometrie z CAD modelu a její modifikace. Příklad 3: Využití symetrie. 5. cvičení – Chyba výpočtu MKP (aposteriorní odhad). Adaptivní algoritmus MKP (h-metoda). Příklad 4: Tenkostěnná tlaková nádoba. 6. cvičení – Seminární práce. 7. cvičení – Seminární práce. 8. cvičení – Seminární práce. 9. cvičení – Závěrečný test, dokončení a odevzdání seminární práce..

Podmínky absolvování předmětu

Podmínky absolvování jsou definovány pouze pro konkrétní verzi předmětu a formu studia

Výskyt ve studijních plánech

Akademický rokProgramObor/spec.Spec.ZaměřeníFormaJazyk výuky Konz. stř.RočníkZLTyp povinnosti
2019/2020 (B2341) Strojírenství (3901R003) Aplikovaná mechanika P angličtina Ostrava 3 povinný stu. plán
2018/2019 (B2341) Strojírenství (3901R003) Aplikovaná mechanika P angličtina Ostrava 3 povinný stu. plán
2017/2018 (B2341) Strojírenství (3901R003) Aplikovaná mechanika P angličtina Ostrava 3 povinný stu. plán
2016/2017 (B2341) Strojírenství (3901R003) Aplikovaná mechanika P angličtina Ostrava 3 povinný stu. plán

Výskyt ve speciálních blocích

Název blokuAkademický rokForma studiaJazyk výuky RočníkZLTyp blokuVlastník bloku
ECTS - MechEng - Bachelor Studies 2019/2020 prezenční angličtina povinně volitelný 301 - Studijní oddělení a International Office stu. blok
ECTS - MechEng - Bachelor Studies 2018/2019 prezenční angličtina povinně volitelný 301 - Studijní oddělení a International Office stu. blok
ECTS - MechEng - Bachelor Studies 2017/2018 prezenční angličtina povinně volitelný 301 - Studijní oddělení a International Office stu. blok
ECTS - MechEng - Bachelor Studies 2016/2017 prezenční angličtina povinně volitelný 301 - Studijní oddělení a International Office stu. blok

Hodnocení Výuky

Předmět neobsahuje žádné hodnocení.