330-0507/01 – Experimental Stress Analysis (EP)

Gurantor departmentDepartment of Applied MechanicsCredits4
Subject guarantordoc. Ing. František Fojtík, Ph.D.Subject version guarantordoc. Ing. František Fojtík, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageCzech
Year of introduction2015/2016Year of cancellation2022/2023
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
FOJ08 doc. Ing. František Fojtík, Ph.D.
SOF007 doc. Ing. Michal Šofer, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 4+8

Subject aims expressed by acquired skills and competences

To give students of Applied Mechanics with different experimental methods designed to analyze the deformation (stress) behavior of materials, which is induced in components of external loads or residual stress from the technological processes of manufacture, etc. Students learn the application of selected methods to specific examples.

Teaching methods

Lectures
Tutorials
Experimental work in labs

Summary

Basics of photoelasticity – linear and circularly polarized light, temporary birefringence, Wertheim law. Determination of stress on body´s unloaded surface, reflex photoelasticity. Basics of extensometry – principle of the method, basic types of strain gauges, bridge connections, thermal compensation, evaluation of strain gauge roses. Strain gauge sensors. Force, torque, weight and shock load measurements. Methods of measuring residual stresses and their evaluation.

Compulsory literature:

[1] DOYLE, J.F.: Modern Experimental Stress Analysis: Completing the solution of partially specified problems. John Wiley & Sons, Ltd 2004, 424p. ISBN 0-470-86156-8. [2] SUTTON, M.A.; ORTEU J.-J.; SCHREIER, H. W. Image Correlation for Shape, Motion and Deformation Measurements. Basic Concepts, Theory and Applications. Springer Science+Business Media, LLC 2009, 321p. ISBN: 978-0-387-78746-6

Recommended literature:

[1] Amidror, I. The Theory of the Moiré Phenomenon, Volume I: Periodic Layers. Springer-Verlag London Limited 2009. ISBN: 978-1-84882-180-4

Way of continuous check of knowledge in the course of semester

Test, example solutions

E-learning

no

Other requirements

Requirements to the students are solved in exercise

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Basic of fotoelesticimetry 2. data evaluation in the whole body, integration izostat method, diference principal stress method 3. Fotoelasticitmetry measurement in practices 4. Space fotoelasticimetry 5. Basic of strain gauge, strain gauge, strain gauge measurement and its application 6. Strain gauge sensors, mass, acceleration, etc. 7. Impakt measurement by strain gauge sensors 8. Measurement residual stress by drilling method 9. Method of brittle lacquer 10. Viskoplastic method – evaluation in region of plasticity 11. Moire method – using at region of elastic and plastic deformation 12. Thermal emission method

Conditions for subject completion

Part-time form (validity from: 2017/2018 Winter semester, validity until: 2022/2023 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 35  20
        Examination Examination 65  16 3
Mandatory attendence participation: 80%

Show history

Conditions for subject completion and attendance at the exercises within ISP: In order to comlpete the credit, students submit four semester projekts. The materials for the semester work will be arranged with the teacher. On the basis of a successfully completed credit, they can take an exam, which will consist of a written and an oral part.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2022/2023 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2022/2023 (N2301) Mechanical Engineering (3901T003) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2021/2022 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2021/2022 (N2301) Mechanical Engineering (3901T003) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2020/2021 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2020/2021 (N2301) Mechanical Engineering (3901T003) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3901T003) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2018/2019 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2018/2019 (N2301) Mechanical Engineering (3901T003) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2017/2018 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2017/2018 (N2301) Mechanical Engineering (3901T003) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2016/2017 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2015/2016 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2020/2021 Summer
2019/2020 Summer
2018/2019 Summer
2017/2018 Summer