330-0512/02 – FEM II (MKPII)

Gurantor departmentDepartment of Applied MechanicsCredits5
Subject guarantordoc. Ing. Martin Fusek, Ph.D.Subject version guarantorprof. Ing. Petr Horyl, CSc., dr.h.c.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageEnglish
Year of introduction2015/2016Year of cancellation
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
MAW007 doc. Ing. Pavel Maršálek, Ph.D.
POD10 doc. Ing. Jiří Podešva, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

Subject aims expressed by acquired skills and competences

Outline principle of derivation mass matrix in slope-deflection variant of FEM Identify meaning solution of natural frequencies and mode shapes and classify differences for Bernoulli and Timoshenko beam Define methods for numerical computing of eigenvalues and eigenvectors for undamped systems Construct reduction method for easy problem of natural frequency Solve matrix equation of motion by modal method Classify direct integration method, compare implicit and explicit method Clarify solution principle of nonlinear static problems Relate methods for analysis contacts problem by FEM

Teaching methods

Lectures
Tutorials
Project work

Summary

1. Dynamics and FEM 2. Mass matrix 3. Equations of motion of elastic systems 4. Natural frequencies and mode shapes - properties and normalization of mode shapes - methods for computing eigenvalues and eigenvectors 5. Reduction of the number of DOf in dynamics 6. Response history: modal method - proportional damping matrix - vibration caused by initial conditions - harmonic response - general excitation 7. Response history: direct integration method (implicit and explicit methods) 8. Principles of solution nonlinear static problems, fundamental numeric solution of contacts in FEM 9. Newton-Raphson method, arc-length method

Compulsory literature:

Cook R. D., Malkus D.S., Plesha M.E., Witt R.J. CONCEPTS AND APPLICATIONS OF FINITE ELEMENT ANALYSIS. 4th edition. J. Wiley & Sons, Inc. NY, 2002, p. 719, ISBN 0-471-35605-0 Examples for ANSYS solutions: http://www.mece.ualberta.ca/tutorials/ansys/ REDDY, J.N., An Introduction Nonlinear Finite Element Analysis, Oxford University Press, 2004, p. 463, ISBN 0-19-852529-X BHATTI, M. A., Fundamental Finite Element Analysis and Applications: with Mathematica and Matlab Computations, Wiley, 2005, p.590, ISBN 0-471-64808-6 HORYL, P. FEM Finite Element Method Introduction,2014,https://www.fs.vsb.cz/330/cs/MKP-II/

Recommended literature:

BHATTI,M.A., Advanced Topics in Finite Element Analysis of Structures: with Mathematica and Matlab Computations, Wiley, 2006, p.590, ISBN-13 978-0-471- 64807-9

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

Good knowledge of numerical mathematics, especially Voight notation of matrix calculus.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Dynamics and FEM 2. Mass matrix 3. Equations of motion of elastic systems 4. Natural frequencies and mode shapes - properties and normalization of mode shapes - methods for computing eigenvalues and eigenvectors 5. Reduction of the number of DOf in dynamics 6. Response history: modal method - proportional damping matrix - vibration caused by initial conditions - harmonic response - general excitation 7. Response history: direct integration method (implicit and explicit methods) 8. Principles of solution nonlinear static problems, fundamental numeric solution of contacts in FEM 9. Newton-Raphson method, arc-length method

Conditions for subject completion

Full-time form (validity from: 2015/2016 Winter semester, validity until: 2020/2021 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 35  20
        Examination Examination 65  16 3
Mandatory attendence participation: Compulsory participation in seminars, absence a maximum of 2 times per semester.

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2022/2023 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan
2021/2022 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan
2020/2021 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan
2018/2019 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan
2017/2018 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan
2016/2017 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan
2015/2016 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P English Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
ECTS - MechEng - Master Studies 2019/2020 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2018/2019 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2017/2018 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2016/2017 Full-time English Choice-compulsory 301 - Study and International Office stu. block

Assessment of instruction



2017/2018 Summer