330-0533/01 – Numerical Methods of Mechanics II (MKPII)

Gurantor departmentDepartment of Applied MechanicsCredits5
Subject guarantordoc. Ing. Martin Fusek, Ph.D.Subject version guarantordoc. Ing. Martin Fusek, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2021/2022Year of cancellation
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
FUS76 doc. Ing. Martin Fusek, Ph.D.
HAL22 prof. Ing. Radim Halama, Ph.D.
MAW007 doc. Ing. Pavel Maršálek, Ph.D.
POR05 doc. Ing. Zdeněk Poruba, Ph.D.
ROJ71 Ing. Jaroslav Rojíček, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+3
Part-time Credit and Examination 16+0

Subject aims expressed by acquired skills and competences

Teach a students the basic procedures for solving of ground technical problems of continuum mechanics. Ensure understanding of teaching problems. To learn the students if they can apply gained theoretical peaces of knowledge in praxis.

Teaching methods

Lectures
Tutorials

Summary

The course builds on the course FEM1. It extends the foundations for the use of the finite element method in technical practice by the issue of stationary and non-stationary tasks. Furthermore, students will become familiar with the solution of tasks falling in the field of thermal stress (multiphysical problem) and thus extend their knowledge of the basic course on this issue. Further numerical methods applicable in the mechanics of flexible bodies (finite difference method, BEM) will be discussed.

Compulsory literature:

[1] BEER,G.-WATSON,J.O. Introduction to Finite and Boundary Element Methods for Enginners. John Wiley & Sons, 1992509p.ISBN 0-471-92813-5

Recommended literature:

[1] BARRON, F. R. – BARRON R., B. Design for Thermal Stresses, Willey: 2012. 510 s., ISBN 978-0-470-62769-3

Way of continuous check of knowledge in the course of semester

project development and its defense, combined exam

E-learning

Other requirements

There are no further requirements for the student.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Introduction, revision (matrix calculus, continuum mechanics, numerical methods, modeling) 2. Finite element method - basic concepts, stationary and non-stationary problems 3. Linear loss of shape stability 4. Motion equations of elastic systems, Dynamics and FEM 5. Eigen frequencies and eigenmodes of oscillation 6. Solution of mechanical system response by the method of development into eigenmodes - proportional damping matrix 7. Direct integration methods of motion equations - implicit methods 8. Direct integration methods of motion equations - explicit methods 9. Basic terms of thermomechanics, material and temperature 10. Basic equations of thermoelasticity, FEM in thermal problems 11. Heat transfer 12. Mutltiphysical problems 13. Introduction to the network method 14. Introduction to boundary element method

Conditions for subject completion

Part-time form (validity from: 2021/2022 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 35  20
        Examination Examination 65  25 3
Mandatory attendence participation: Credit conditions: - Development and defense of 2 projects. Exam: - On the basis of a successfully completed credit, the student can take the exam. The exam is combined (written and oral part).

Show history

Conditions for subject completion and attendance at the exercises within ISP: Credit conditions: - Development and defense of 2 projects. Exam: - On the basis of a successfully completed credit, the student can take the exam. The exam is combined (written and oral part).

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (N0715A270033) Applied Mechanics NEM K Czech Ostrava 1 Compulsory study plan
2024/2025 (N0715A270033) Applied Mechanics NEM P Czech Ostrava 1 Compulsory study plan
2023/2024 (N0715A270033) Applied Mechanics NEM P Czech Ostrava 1 Compulsory study plan
2023/2024 (N0715A270033) Applied Mechanics NEM K Czech Ostrava 1 Compulsory study plan
2022/2023 (N0715A270033) Applied Mechanics NEM K Czech Ostrava 1 Compulsory study plan
2022/2023 (N0715A270033) Applied Mechanics NEM P Czech Ostrava 1 Compulsory study plan
2021/2022 (N0715A270033) Applied Mechanics NEM P Czech Ostrava 1 Compulsory study plan
2021/2022 (N0715A270033) Applied Mechanics NEM K Czech Ostrava 1 Compulsory study plan
2020/2021 (N0715A270033) Applied Mechanics NEM P Czech Ostrava 1 Compulsory study plan
2020/2021 (N0715A270033) Applied Mechanics NEM K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2022/2023 Winter
2021/2022 Winter