330-0534/01 – Mathematics on Background Engineering Tasks (MnPIU)

Gurantor departmentDepartment of Applied MechanicsCredits4
Subject guarantordoc. Ing. Martin Fusek, Ph.D.Subject version guarantordoc. Ing. Martin Fusek, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2020/2021Year of cancellation
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
FUS76 doc. Ing. Martin Fusek, Ph.D.
KOR0145 Ing. Michal Kořínek
SOT0036 Ing. Martin Šotola, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Graded credit 2+2
Part-time Graded credit 16+0

Subject aims expressed by acquired skills and competences

Learning outcomes of the course unit The aim of the course is to extend students' knowledge of practical use of mathematics in their study and subsequent engineering practice.

Teaching methods

Lectures
Tutorials

Summary

Successful solution of the problems arising in engineering requires anunderstanding of relevant mathematics. The students will learn about basic tools and their applications for the solution of such problems.

Compulsory literature:

[1] Crandal R. E.Mathematica for the Sciences, Addison-Wesley Publishing Company,Redwood City 1991, pp. 300, ISBN 0-201-51001-4 [2] K. Rektorys, Variational Methods in Mathematics, Science and Engineering. Reidel, Dordrecht, 1980

Recommended literature:

[1] G. Strang, Introduction to Applied Mathematics. Wellesley-Cambridge Press, 1986. ISBN-13: 9780961408800 [2] Mannucci M. A., Yanofsky N. S.,Quantum Computing For Computer Scientists,Cambridge University Press, Cambridge 2008, pp. 384., ISBN 978-0-521-87996-5

Way of continuous check of knowledge in the course of semester

The student will develop a program and write a credit test.

E-learning

Other requirements

Additional requirements for students are not.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Numerické řešení nelineárních úloh. 2. Některé okrajové úlohy pro obyčejné diferenciální rovnice 2. stupně. 3. Síťová diskretizace. 4. Zavedení okrajových podmínek. 5. Variační formulace okrajových úloh . 6. Diskretizace založená na variační formulaci. 7. Kolokace, Ritzova metoda, Galerkinova metoda. 8. Metoda konečných prvků. 9. Vlastnosti matic a finitní metody řešení diskretizovaných soustav 10. Variační nerovnice a jejich diskretizace. 11. Numerické řešení variačních nerovnic. 12. Hraniční integrální rovnice 13. Metoda hraničních prvků pro modelovou úlohu. 14. Software

Conditions for subject completion

Part-time form (validity from: 2021/2022 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Graded credit Graded credit 100  51 3
Mandatory attendence participation: Credit conditions: - Development and defense of 2 projects.

Show history

Conditions for subject completion and attendance at the exercises within ISP: Credit conditions: - Development and defense of 2 projects.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (N0715A270033) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2024/2025 (N0715A270033) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2023/2024 (N0715A270033) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2023/2024 (N0715A270033) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2022/2023 (N0715A270033) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2022/2023 (N0715A270033) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2021/2022 (N0715A270033) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2021/2022 (N0715A270033) Applied Mechanics K Czech Ostrava 1 Compulsory study plan
2020/2021 (N0715A270033) Applied Mechanics P Czech Ostrava 1 Compulsory study plan
2020/2021 (N0715A270033) Applied Mechanics K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2022/2023 Winter
2021/2022 Winter