330-0906/01 – Theory of Plasticity (TEPL)

Gurantor departmentDepartment of Applied MechanicsCredits10
Subject guarantorprof. Ing. Radim Halama, Ph.D.Subject version guarantorprof. Ing. Jan Fuxa, CSc.
Study levelpostgraduateRequirementChoice-compulsory
YearSemesterwinter + summer
Study languageCzech
Year of introduction2015/2016Year of cancellation
Intended for the facultiesFSIntended for study typesDoctoral
Instruction secured by
LoginNameTuitorTeacher giving lectures
HAL22 prof. Ing. Radim Halama, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Examination 25+0
Part-time Examination 25+0

Subject aims expressed by acquired skills and competences

To teach students derive benefit from the newest knowledge of subject with possibility the knowledge further evolves and apply for complicated problems.

Teaching methods

Individual consultations
Experimental work in labs

Summary

The fundamental nature of material properties. Yield point phenomena. Brittle fracture, toughness. Stress state at general material point, stress components on a general plane, effective stress, octahedral normal and shear stress. Strain and strain rate state. Small and large deformations. Mathematical theory of plas-ticity. Constitutive equations - temperature and strain rate effects. Yield criteria. Theory of strength, ref-erence normal and shear stresses. Classical, invariant, mixed, general plain, combined and reference strength criteria. Experiments and testing machines. Examples.

Compulsory literature:

KHAN, A.S., HUANG,S.: Continuum theory of plasticity. John Wiley and sons, Inc. New York - Chichester - Brisbane - Toronto - Singapore. 1995, p.421, ISBN 0-471- 31043-3

Recommended literature:

KHAN, A.S., HUANG,S.: Continuum theory of plasticity. John Wiley and sons, Inc. New York - Chichester - Brisbane - Toronto - Singapore. 1995, p.421, ISBN 0-471- 31043-3 SZCZEPINSKI, W. (editor): Experimental methods in mechanics of solids. Elsevier Amster-dam - Oxford - New York - Tokyo, 1990, p.705, ISBN 83-01-08259-3 Rees, D.W.: Basic solid mechanics. MacMillan press ltd. Houndmills, Basingstoke, Hamp-shire and London, 1997, p.396, ISBN 0-333-66609-7

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

The student prepare individual account on selected topic

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Plasticity theory is focused to theory and practice using of material loading beyond yeld limit. Plasticity theory summarized basic knowledge of physics of materials, testing of materials, testing devices etc.

Conditions for subject completion

Part-time form (validity from: 2015/2016 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Examination Examination   3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2024/2025 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2023/2024 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2023/2024 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2022/2023 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2022/2023 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2021/2022 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2021/2022 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2020/2021 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2020/2021 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2019/2020 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2019/2020 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2018/2019 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2018/2019 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2017/2018 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2017/2018 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2016/2017 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2016/2017 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2016/2017 (P2301) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2015/2016 (P2346) Mechanical Engineering (3901V003) Applied Mechanics P Czech Ostrava Choice-compulsory study plan
2015/2016 (P2346) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan
2015/2016 (P2301) Mechanical Engineering (3901V003) Applied Mechanics K Czech Ostrava Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.