337-0519/01 – Acoustic Measurements (AKUME)

Gurantor departmentDepartment of MechanicsCredits5
Subject guarantorIng. Jan Szweda, Ph.D.Subject version guarantorIng. Jan Szweda, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Study languageCzech
Year of introduction2010/2011Year of cancellation2014/2015
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
WEI08 Ing. Michal Weisz, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+3

Subject aims expressed by acquired skills and competences

1. To characterize the basic acoustic problems and recognize these problems in engineering practice. 2. Explain the principles of acoustic measurement methods, describe their algorithms and discuss their advantages and disadvantages. 3. Apply theoretical knowledge to solving practical problems, interpret the results, modify the solution procedure. 4. Analyze and evaluate the results of acoustic measurements and numerical simulations, predict treatment in applied procedures.

Teaching methods

Individual consultations
Experimental work in labs
Project work


Students will learn the basic procedures of the experimental acoustics and obtained experiences can virtually test and verify on the measurements in the acoustic laboratory, i.e. semi-unechoic chamber. Selected patterns of acoustic problems the students will verifie by mathematical simulation using numerical methods.

Compulsory literature:

Ravindran, A., Ragsdell, K. M.; Reklaitis, G. V. Engineering Optimization. 2nd ed. Wiley, 2003. Yang, Won-Yong, Cao, Wenwu, Chung, Tae-Sang, Morris, John. Applied Numerical Methods Using MATLAB®. Wiley, 2005. Lyshevski, Sergey E. Engineering and Scientific Computations Using MATLAB®. Wiley, 2003.

Recommended literature:


Way of continuous check of knowledge in the course of semester


Other requirements



Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

1. Introduction to Technical Acoustics - human physiology, basic concepts and parameters of technical acoustics. 2. Frequency bands and the decibel scale in acoustics - weighting filters, their meaning and application. 3. Elaboration and analysis of acoustic signal devices for the measurement. 4. Measurements and data processing applications, B & C - pulse, creating a project for measurements in environments PULSE - LabShop. 5. Measurement and evaluation of performance of acoustic noise sources. 6. Methods of reducing noise, acoustic emission. 7. Introduction to sound system - electro-acoustic transducers, measuring and assessing the performance of electroacoustic chain.

Conditions for subject completion

Full-time form (validity from: 2011/2012 Winter semester, validity until: 2014/2015 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 35  20
        Examination Examination 65  31
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2014/2015 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 2 Compulsory study plan
2013/2014 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 2 Compulsory study plan
2012/2013 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 2 Compulsory study plan
2011/2012 (N2301) Mechanical Engineering (3901T003) Applied Mechanics P Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
ECTS - MechEng 2012/2013 Full-time Czech Choice-compulsory 301 - Study and International Office stu. block