338-0013/01 – Metoda konečných objemů (MKO)

Garantující katedraKatedra hydromechaniky a hydraulických zařízeníKredity5
Garant předmětuprof. RNDr. Milada Kozubková, CSc.Garant verze předmětuprof. RNDr. Milada Kozubková, CSc.
Úroveň studiapregraduální nebo graduálníPovinnostpovinně volitelný
Ročník4Semestrletní
Jazyk výukyčeština
Rok zavedení1998/1999Rok zrušení2000/2001
Určeno pro fakultyUrčeno pro typy studia
Rozsah výuky pro formy studia
Forma studiaZp.zak.Rozsah
prezenční Zápočet a zkouška 2+2

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Vyučovací metody

Anotace

- fyzikální význam turbulence - matematický model laminárního a turbulentního, nestlačitelného a stlačitelného proudění - programové systémy pro řešení proudění - metoda konečných objemů ve Fluentu - okrajové podmínky, podmínky vstupu a výstupu, podmínky symetrie, periodické podmínky, podmínky na stěně, přestup tepla stěnou - k-eps model, RNG model, RSM model - aplikace

Povinná literatura:

FLUENT. Users Guide, Tatorial Guide. Lebanon: Fluent Incorporated, 1998, Vol. 1- 4. ROACHE,P.J. Computational Fluid Dynamics. Albuquerque: Hermosa Publischers, 1976, 612 p. KOZUBKOVÁ,M.-DRÁBKOVÁ,S.-ŠŤÁVA.P. Matematické modely nestlačitelného a stlačitelného proudění. Metoda konečných objemů. Skripta. Ostrava: VŠB-TU, 1999, 106 s.

Doporučená literatura:

Forma způsobu ověření studijních výsledků a další požadavky na studenta

E-learning

Další požadavky na studenta

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.

Osnova předmětu

1. P.: Úvod, numerické modelování proudění – různé komerční systémy, Fluent – fyzikální modely, turbulentní modely, komerční systémy pro řešení proudění, řešené příklady od firmy, katedrou, ekologické úlohy C.: práce na SGI, operační systém Unix, přihlášení na IBM, úvod do Fluentu 2. P.: Souřadný systém, Navier-Stokesova rovnice (laminární proudění), sčítací pravidla, příklady, proudění při náhlém rozšíření průřezu C.: Modelování laminárního proudění v obdélníkové mezeře, grafické vyhodnocení výsledků 3. P.: Fyzikální význam turbulence C.: proudění při náhlém rozšíření průtočného průřezu, geometrie, okrajové podmínky 4. P.: Matematický model turbulence, N-S rovnice, rovnice kontinuity, Reynoldsova napětí, časové středování, Reynoldsova pravidla, Boussinesqova hypotéza, dvourovnicový model turbulence C.: Turbulentní proudění za schodem, turbulentní okrajové podmínky 5. P.: Obecná rovnice zachování, příklad rovnice vedení tepla+okrajové a počáteční podmínky, numerické metody řešení (diferenční metoda, metoda konečných objemů, metoda konečných prvků, spektrální metoda), geometrie a generace sítě, příklad proudění při přirozené konvekci, modelování Taylorových vírů C.: Výpočet neizotermního proudění při přirozené konvekci 6. P.: Integrace metodou konečných objemů pro jednorozměrnou rovnici kontinuity a pohybovou rovnici, iterační cyklus, simple a simplec metody, Interpolační schéma, konvergence (reziduály, uderrelax), skládání proudů, definování příměsi C.: Izotermické proudění v osově symetrickém případě - Taylorovy víry 7. P.:Okrajové podmínky, podmínky vstupu a výstupu, podmínky symetrie, periodické podmínky, podmínky na stěně, přestup tepla stěnou, časově závislá úloha C.: Výpočet rozptylu příměsi, skládání proudu, 2D úloha 8. P.: Neizotermní proudění mezi rotujícími disky (dipl.Milota). Proudění s pevnými částicemi a kapkami, příměsi a jejich definice. C.: 3D modelování rozptylu příměsi, srovnání koncentrací ve 2D a 3D 9. P.: Metody řešení diskretizovaných rovnic, LGS řešič, multigrid. C.: Rozptyl hmotných částic při proudění z komínu 10. P.: k-eps model, RNG model, RSM model, modelování proudění v blízkosti stěny stěnové funkce, okrajové podmínky C.: Časově závislý zdroj, modelování a grafické vyhodnocení 11. P.: Proudění skutečných kapalin, zákon zachování hmotnosti, hybnosti, energie, entalpie při stlačitelném proudění C.: Neizotermické proudění v mezeře mezi rotujícími disky s uvažováním vodivosti stěn 12. P.: Zadání individuálních seminárních prací, diskuze C.: Řešení individuální seminární práce 13. P.: Fluent 4.5 a Fluent 5: Rozdíly, import CASE souborů do Fluentu 5, roletové menu, modely turbulence, typy sítí, adaptace sítě podle gradientu a jiných veličin, okrajové podmínky, změny typu okrajových podmínek, zadávání profilů pro okrajové podmínky, metody výpočtu, vyhodnocení C.: Řešení individuální seminární práce 14. P.: Bilanční rovnice C.: Řešení individuální seminární práce

Podmínky absolvování předmětu

Prezenční forma (platnost od: 1960/1961 letní semestr)
Název úlohyTyp úlohyMax. počet bodů
(akt. za podúlohy)
Min. počet bodů
Zápočet a zkouška Zápočet a zkouška 100 (145) 51
        Zkouška Zkouška 100  0
        Zápočet Zápočet 45  0
Rozsah povinné účasti:

Zobrazit historii

Výskyt ve studijních plánech

Akademický rokProgramObor/spec.Spec.ZaměřeníFormaJazyk výuky Konz. stř.RočníkZLTyp povinnosti
2005/2006 (M2301) Strojní inženýrství (3901T003) Aplikovaná mechanika P čeština Ostrava 4 povinně volitelný stu. plán
2004/2005 (M2301) Strojní inženýrství (3901T003) Aplikovaná mechanika P čeština Ostrava 4 povinně volitelný stu. plán
2003/2004 (M2301) Strojní inženýrství (3901T003) Aplikovaná mechanika P čeština Ostrava 4 povinně volitelný stu. plán
2002/2003 (M2301) Strojní inženýrství (3901T003) Aplikovaná mechanika P čeština Ostrava 4 povinně volitelný stu. plán
2001/2002 (M2301) Strojní inženýrství (3901T003) Aplikovaná mechanika P čeština Ostrava 4 povinně volitelný stu. plán
2000/2001 (M2301) Strojní inženýrství (3901T003) Aplikovaná mechanika P čeština Ostrava 4 povinně volitelný stu. plán

Výskyt ve speciálních blocích

Název blokuAkademický rokForma studiaJazyk výuky RočníkZLTyp blokuVlastník bloku