Gurantor department | Department of Hydromechanics and Hydraulic Equipment | Credits | 5 |

Subject guarantor | doc. Ing. Marian Bojko, Ph.D. | Subject version guarantor | doc. Ing. Marian Bojko, Ph.D. |

Study level | undergraduate or graduate | Requirement | Compulsory |

Year | 2 | Semester | winter |

Study language | Czech | ||

Year of introduction | 2021/2022 | Year of cancellation | |

Intended for the faculties | FEI, FAST, FS | Intended for study types | Follow-up Master |

Instruction secured by | |||
---|---|---|---|

Login | Name | Tuitor | Teacher giving lectures |

BOJ01 | doc. Ing. Marian Bojko, Ph.D. |

Extent of instruction for forms of study | ||
---|---|---|

Form of study | Way of compl. | Extent |

Full-time | Credit and Examination | 2+2 |

Part-time | Credit and Examination | 12+5 |

Students will learn the mathematical model of fluid flow including heat transfer by conduction and convection using the finite volume method (FVM). They will be able to create a mathematical model of heat transfer through different construction structures, which will be characterized by materials with different physical properties and the problem subsequently solved. Furthermore, students will be able to define the mathematical model of turbulent flow and apply it to the problems of ventilation in a room, building or production hall.

Lectures

Tutorials

Project work

The course is focused on the possibility of modeling the flow of heat transfer (conduction, convection), including the generation of mesh for issues related to the modeling of flow. Students will extend theoretical knowledge in the field transfer of heat, mass and momentum of flow. The finite volume method (FVM) will be used to solve the system of equations describing the flow. The method will focus mainly on the solution of conduction of heat by various construction structures, which will be defined by different material properties. Furthermore, (FVM) will be applied to the issue of air flow in a closed room and thus the solution of air conditioning. ANSYS-Fluent software is used for practical applications of the example (FVM). Numerical simulations will be realized on BIM models within the course. To adjust of geometry in software ANSYS will be used DesignModeler and ANSYS Meshing is used to generation of mesh.

INCROPERA, F., P. ET AL. Fundamentals of heat and mass transfer. 6th ed.. Hoboken : Wiley, c2007 – xxv. 997 s. ISBN 0-471-45728-0.
SHAUGHNESSY, E. J., KATZ, I. M., SCHAFFER, J. P. INTRODUCTION TO FLUID MECHANICS. New York: Oxford University Press, Inc. 2005. p. 1018.
ANSYS Fluent Theory Guide (Release 18.2). 2017.
ANSYS Fluent User’s Guide (Release 18.2). 2017.
WILKES, J., O. Fluid mechanics for chemical engineers with Microfluidics and CFD. 2nd ed. Upper Saddle River: Prentice Hall Professional Technical Reference, c2006. Prentice Hall international series in the physical and chemical engineering sciences. ISBN 0-13-148212-2.

RODI, W., FUEYO, N. Engineering Turbulence Modelling and Experiments 5. First edition. Oxford: ELSEVIER SCIENCE Ltd. 2002. p. 1010. ISBN 0-08-044114-9.
ANSYS Fluent Tutorial Guide (Release 18.2). 2017.
ANSYS Fluent User’s Guide (Release 18.2). 2017.

seminar work and oral examination

The student will elaborate a seminar work for which they have to obtain a minimum number of points for credit
Questions for exam:
1. Continuum hypothesis, physical properties of fluids and solids
2. Methods of solution for heat, mass and momentum transfer, transfer definition
3. Convective transfer, diffusion transfer, basic balance equation of transfer
4. Creation of geometry, 2D and 3D cells of mesh, convergence and residuals, acceleration of convergence
5. Boundary conditions
6. Numerical methods of solution, finite volume method
7. Heat transfer equation by conduction, boundary conditions
8. Fundamental equations of mass, momentum and energy, continuity equation, Navier-Stokes equation, energy equation
9. Solution of conduction and convection in laminar flow
10. Turbulence, Reynolds time averaging k-eps two-equation model of turbulence
11. Boundary conditions for k-eps turbulent model, mass flow, turbulent quantities, inlet pressure, outlet pressure, Outflow
12. Solution of conduction and convection in turbulent flow
At least 70% attendance at the exercises. Absence, up to a maximum of 30%, must be excused and the apology must be accepted by the teacher (the teacher decides to recognize the reason for the excuse).

Subject has no prerequisities.

Subject has no co-requisities.

1. Introduction, modeling of flow by CFD programs, characteristics of commercial system ANSYS Fluent, solved problems by department (science and research projects, cooperation with companies).
2. Problems of continuum, physical properties of fluids and solids, definition of the transfer (convection, diffusion), numerical methods of solution.
3. Creation of geometry for CFD flow of fluids, generation of the mesh, stability of numerical calculation, convergence, residuals, boundary conditions.
4. Heat transfer by conduction, basic equations of heat transfer, boundary conditions in example of transfer of heat conduction.
5. The use of CFD heat conduction in application of construction structures (creation of 2D model, generation of computational grid - mesh, definition of boundary conditions in ANSYS Workbench).
6. CFD solution of heat conduction in ANSYS Fluent, variants of boundary conditions, various materials, Postprocessing.
7. Basic equations of mass, momentum and energy transfer - continuity equation, Navier-Stokes equations, energy equation, boundary conditions, laminar and turbulent flow.
8. Turbulence. Physical significance of turbulence, random character of turbulence, statistical approaches, flow of incompressible and compressible medium, k-eps two-equation model of turbulence.
9. Solution of turbulent flow in closed room (simulation of air-conditioning), creation of 3D model, generation of computational grid, definition of mathematical model and boundary conditions in ANSYS Workbench.
10. CFD analysis of flow calculation in a closed room, different boundary conditions, Postprocessing.

Task name | Type of task | Max. number of points
(act. for subtasks) | Min. number of points | Max. počet pokusů |
---|---|---|---|---|

Credit and Examination | Credit and Examination | 100 (100) | 51 | |

Credit | Credit | 35 | 25 | |

Examination | Examination | 65 | 26 | 3 |

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Academic year | Programme | Field of study | Spec. | Zaměření | Form | Study language | Tut. centre | Year | W | S | Type of duty | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

2022/2023 | (N0732A260029) Civil Engineering - BIM Engineering | P | Czech | Ostrava | 2 | Compulsory | study plan | |||||

2022/2023 | (N0732A260029) Civil Engineering - BIM Engineering | K | Czech | Ostrava | 2 | Compulsory | study plan | |||||

2021/2022 | (N0732A260029) Civil Engineering - BIM Engineering | K | Czech | Ostrava | 2 | Compulsory | study plan | |||||

2021/2022 | (N0732A260029) Civil Engineering - BIM Engineering | P | Czech | Ostrava | 2 | Compulsory | study plan | |||||

2020/2021 | (N0732A260029) Civil Engineering - BIM Engineering | K | Czech | Ostrava | 2 | Compulsory | study plan | |||||

2020/2021 | (N0732A260029) Civil Engineering - BIM Engineering | P | Czech | Ostrava | 2 | Compulsory | study plan |

Block name | Academic year | Form of study | Study language | Year | W | S | Type of block | Block owner |
---|

2022/2023 Winter |