338-0513/02 – Applied Fluid Mechanics (AplMT)

Gurantor departmentDepartment of Hydromechanics and Hydraulic EquipmentCredits4
Subject guarantordoc. Dr. Ing. Lumír HružíkSubject version guarantorprof. RNDr. Milada Kozubková, CSc.
Study levelundergraduate or graduateRequirementChoice-compulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2008/2009Year of cancellation2010/2011
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
HRU38 doc. Dr. Ing. Lumír Hružík
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Graded credit 2+2
Part-time Graded credit 10+4

Subject aims expressed by acquired skills and competences

The aim of the course is to acquaint students with the mathematical models, numerical methods and programs for the solution of unsteady flow in fluid systems. They will gain knowledge about the possibilities, advantages, and limitations of using various mathematical models, numerical methods and programs, especially for hydraulic systems with a long hydraulic pipeline. Students gain experience in the field of experimental determination of dynamic properties of fluid systems. Transient and frequency responses of long hydraulic pipelines will be evaluated. They will gain practical experience in numerical modeling of hydraulic system dynamics with a long hydraulic pipeline in Matlab Fluids.

Teaching methods

Lectures
Tutorials
Experimental work in labs
Project work

Summary

In the course of Applied Fluid Mechanics, students learn about mathematical models, numerical methods and programs for solving unsteady fluid flow. They will learn experimental methods of dynamic properties evaluation in fluid systems. They will learn the effects of various parameters on the dynamics of fluid systems. Transient and frequency responses of hydraulic lines will be evaluated.

Compulsory literature:

MATLAB User's Guide. The Mathworks, Inc., USA, www.mathworks.com GOLDSTEIN, R. J. Fluid Mechanics Measurements. Washington: Hemisphere Publishing Corporation. 1983. 647 p. ISBN 0-89116-244-5.

Recommended literature:

MILLER, D. S. Internal Flow System, BHRA UK, 396 s., ISBN 0-947711-77-5 EXNER, H. et al. Basic Principles and Components of Fluid Technology. Lohr am Main, Germany: Rexroth AG., 1991. 344 p. ISBN 3-8023-0266-4.

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Conditions for subject completion

Part-time form (validity from: 1960/1961 Summer semester, validity until: 2010/2011 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Graded exercises evaluation Graded credit 100 (100) 0 3
        Other task type Other task type 100  0 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2008/2009 (N2301) Mechanical Engineering (3909T001) Design and Process Engineering (16) Hydraulics and Pneumatics K Czech Ostrava 1 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.