338-0546/08 – Modeling of fluid flow with heat transfer (MPsPT)
Gurantor department | Department of Hydromechanics and Hydraulic Equipment | Credits | 4 |
Subject guarantor | doc. Ing. Marian Bojko, Ph.D. | Subject version guarantor | doc. Ing. Marian Bojko, Ph.D. |
Study level | undergraduate or graduate | Requirement | Compulsory |
Year | 1 | Semester | summer |
| | Study language | English |
Year of introduction | 2013/2014 | Year of cancellation | |
Intended for the faculties | FS | Intended for study types | Follow-up Master |
Subject aims expressed by acquired skills and competences
In this course, students will learn in detail the basic concepts of modeling fluid flow and heat transfer, ie conduction and convection. They will also gain knowledge about mathematical models of multiphase flow with phase change (eg cavitation), optimization of geometry in terms of hydraulic quantities and the possibility of modeling time-dependent vortex structures. They will learn to solve selected problems using available software.
Teaching methods
Lectures
Tutorials
Summary
The subject deals with the physical meaning of turbulence and mathematical models of laminar and turbulent flow with heat transfer. The mathematical model is defined by a system of partial differential equations and supplemented by boundary and initial conditions. In addition to normal hydraulic flow conditions, wall conditions, heat transfer through the wall, time-dependent boundary conditions, and conditions for multi-phase flow are also taken into account. Classical models of turbulence are defined in detail. The theory is applied to examples solving bypassing of obstacles, buoyancy force, natural convection, heat transfer through the wall, etc. For the solution is applied software product Ansys-Fluent, which uses the finite volume method.
Compulsory literature:
Recommended literature:
[1] ANSYS Fluent Theory Guide (Release 18.2). 2017.
[2] ANSYS Fluent Tutorial Guide (Release 18.2). 2017.
Way of continuous check of knowledge in the course of semester
individual work of the student at seminars, elaboration of seminar work for the credit - max. 84 points
2 tests - max. 16 points
E-learning
Other requirements
Students prepare seminar paper. They must obtained the minimum number of points for credit
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
Outline of the course:
1. Introduction, physical properties of fluids, balance transfer equation
2. Differential method, network types, finite volume method, relaxation, residuals
3. Conduction, heat conduction in a plate, time-dependent solution
4. Laminar flow, application to water flow between plates, boundary conditions, calculation of velocity profile
5. Conduction and convection in laminar flow, evaluation of thermal quantities, reference values
6. Turbulence, calculation and evaluation of turbulent quantities, boundary conditions for turb. quantities,
7. Accuracy of wall turbulence calculation according to gradient, RSM, LES, DNS methods, flow around cylinder
8. Conduction and convection in turbulent flow, single pipe wrapping, cross pipe wrapping and in-line, temperature-dependent physical properties
9. Heat exchangers in general, co-current, counter-current, physical properties of gas, kinetic theory, example of a tube heat exchanger, spiral heat exchanger
10. Time-dependent flow, boundary conditions of time-dependent solution, FFT-examples
11. Optimization of flow geometry (elbow)
12. Multiphase flow, physical properties of mixture, flow of gas mixture, gravity
13. Cavitation flow, porous medium flow - nozzle application,
14. Vectors in flow theory, discussion
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction