345-0501/07 – Theory of Technological Processes (TTP)

Gurantor departmentDepartment of Mechanical TechnologyCredits6
Subject guarantordoc. Ing. Lucie Krejčí, Ph.D.Subject version guarantorprof. Ing. Petr Mohyla, Ph.D.
Study levelundergraduate or graduate
Study languageEnglish
Year of introduction2016/2017Year of cancellation
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
KRE45 doc. Ing. Lucie Krejčí, Ph.D.
KON0226 Ing. Hana Krupová
MOH37 prof. Ing. Petr Mohyla, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

Subject aims expressed by acquired skills and competences

Obtaining of knowledges about influence of inside structure and quality materials on course technological process and knowledges of influence technological process - cutting, forming, welding, heat treatment, surface treatment - on changes of inside structure and quality materials.

Teaching methods

Lectures
Tutorials
Experimental work in labs

Summary

Influence of inside structure of material and of material properties on course technological process. Influence of technological process on change of material structure and material properties. Thermal treatment of the material. Influence of technology on damage of material. Elastic and plastic behaviour of material. Fatigue and fracture of material. Corrosion of materials. Diffusion in material. Influence technology of cutting, of forming, of welding, of heat processing, of surface treatment and corrosive environment.

Compulsory literature:

KELLY, A., GROVES, G. W., KIDD, P. Crystallography and Crystal Defects. Wiley, John and Sons, Incorporated, 2000, 486pp. BEKE, D. L., SZABO, I. A. Diffusion and Stresses. Scient. Publications, Limited, 1996, 356pp. FUENTES, M., SEVILLANO, J. G. Recrystallization. Trans Tech Publications, Limited, 1992, 752pp. HERTZBERG, R. W. Deformation and Fracture Mechanics of Engineering Materials. Wiley, John and Sons, Incorporated, 1995, 786pp. MATTSSON, E. Basic Corrosion Technology for Scientists and Engineers, 2nd Ed. IOM/Maney Publishing, 1999, 224pp.

Recommended literature:

NALWA, H. S.: Nanostructured Materials and Nanotechnology. Academic Press, 2002

Way of continuous check of knowledge in the course of semester

Seminar work, tests

E-learning

Other requirements

Active attendance at exercises - at least 80%. Performance of all projects and tests.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures: 1. Internal structure of metals and its influence on technological processes 2. Crystallographic lattice defects and their influence on technological processes 3. Plastic deformation of metals and alloys 4. Recrystallization processes of metals and alloys 5. Diffusion in metals and alloys 6. Effect and utilization of diffusion in technological processes 7. Phase transformations in metals and alloys, equilibrium diagrams 8. Behavior of materials at elevated temperatures, creep, relaxation 9. Fractures of engineering materials 10. Fracture mechanics, linear-elastic fracture mechanics 11. Corrosion, impact of environment on material properties changes 12. Theory of heat treatment of metals 13. Theory of Welding Technology 14. Theory brazing technology Exercises: 1. Preliminary exercises 2. Equilibrium diagrams 3. System iron - carbon 4. Production of iron and steel 5. Designation of steels 6. Heat treatment of steel 7. Structural changes before and after heat treatment 8. Non-destructive testing of steel 9. Mechanical testing of steel 10. Metallography and other quality testing of steel 11. Cast irons 12. Brittle fracture properties 13. Final test and evaluation exercises 14. Credit

Conditions for subject completion

Full-time form (validity from: 2016/2017 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 35  18
        Examination Examination 65  33 3
Mandatory attendence participation: Active attendance at exercises at least 80%. Students must successfully complete: 1. Test (min. 18 points - max. 35 points) On the basis of successful completion of the credit, they can take the exam.

Show history

Conditions for subject completion and attendance at the exercises within ISP: At least 2 consultations with the teacher of the seminar in the course. Students must successfully complete: 1. Test (min. 18 points - max. 35 points) On the basis of successful completion of the credit, they can take the exam.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (N0715A270022) Mechanical Engineering Technology TP P English Ostrava 1 Compulsory study plan
2023/2024 (N0715A270022) Mechanical Engineering Technology TP P English Ostrava 1 Compulsory study plan
2022/2023 (N0715A270022) Mechanical Engineering Technology TP P English Ostrava 1 Compulsory study plan
2021/2022 (N0715A270022) Mechanical Engineering Technology TP P English Ostrava 1 Compulsory study plan
2020/2021 (N0715A270022) Mechanical Engineering Technology TP P English Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner
ECTS - MechEng - Master Studies 2024/2025 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2023/2024 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2022/2023 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2021/2022 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2020/2021 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2019/2020 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2018/2019 Full-time English Choice-compulsory 301 - Study and International Office stu. block
ECTS - MechEng - Master Studies 2017/2018 Full-time English Choice-compulsory 301 - Study and International Office stu. block

Assessment of instruction



2023/2024 Winter
2022/2023 Winter