# 345-0503/03 – Theory of Metal Forming (TTv)

 Gurantor department Department of Mechanical Technology Credits 6 Subject guarantor prof. Ing. Radek Čada, CSc. Subject version guarantor prof. Ing. Radek Čada, CSc. Study level undergraduate or graduate Requirement Compulsory Year 1 Semester summer Study language Czech Year of introduction 2008/2009 Year of cancellation Intended for the faculties FS Intended for study types Follow-up Master
Instruction secured by
HRU45 prof. Ing. Jiří Hrubý, CSc.
RUS80 prof. Ing. Stanislav Rusz, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

### Subject aims expressed by acquired skills and competences

Students will be able to: • clarify the physical principles of plasticity, • explain and interpret the basic concepts of plasticity, • explain the relationship of stress – plastic deformation. They will get: • an overview of classical plasticity theories, • information on material behavior under uniaxial load. They will be able to: • apply plasticity conditions, • apply plasticity theories to computational methods in forming.

Lectures
Tutorials

### Summary

The subject where first a brief summary of the physical fundamentals of plastic deformation, i.e. physical principles of plasticity, stress – plastic deformation, behavior of material under uniaxial load and then are explained by basic plasticity concepts, classical plasticity theory and ways of using plasticity conditions. At the lectures students are acquainted with the basic concepts necessary to formulate and solve the forming problems and with the basic methods how to solve such problems. In the exercises, the behavior of the material during plastic deformation is numerically modeled and basic forming operations are solved by the discussed methods of analysis. At the end of the course students should be able to apply the theory of plasticity to computational methods in forming.

### Compulsory literature:

[1] HOSFORD. W. F. and CADDELL. R. M. Metal Forming: Mechanics and Metallurgy. 4th ed. United States of America, New York: Cambridge University Press, 2011. 331 s. ISBN 978-1-107-00452-8. Signatura v ÚK VŠB-TUO: 271187, čárový kód: 3174225137, lokace: volný výběr. [2] MIELNIK, E. M. Metalworking Science and Engineering. United States of America, New York: McGraw-Hill, Inc., 1991. 976 s. ISBN 0-07-041904-3. Signatura v ÚK VŠB-TUO: 241568, čárový kód: 3174006766 a 3174128024, lokace: volný výběr.

### Way of continuous check of knowledge in the course of semester

Project max. 30 points Oral exam max. 70 points Total max. 100 points

### E-learning

www.lms.vsb.cz

Active attendance at exercises - at least 80 %.

### Prerequisities

Subject has no prerequisities.

### Co-requisities

Subject has no co-requisities.

### Subject syllabus:

1 Physical fundamentals of plastic deformation. 2 Stress, deformation. 3 Intensity of stress and strain. Resistance to deformation. 4 SVT and HMH plasticity conditions. Plasticity conditions for materials dependent on hydrostatic pressure. 5 Plasticity conditions for anisotropic materials. Baushinger effect. Models of hardening. 6 Convexity of plasticity surface, Drucker postulate of stability. 7 Strain-strain relations, strain theory, incremental theories, vasclastic flow theory. 8 Work of internal forces, work of external frictional forces. Extremal principles. 9 The role of forming. Methods of solution. Method of deformation work. Method of thin slices. 10 Sliding line method, initial assumptions and solution diagram. 11 Experimentally numerical solution of deformation problem, Visioplast method. 12 Upper limit method, solution diagram. 13 Variational methods, solution scheme, Ritz method. 14 Finite element method, solution diagram.

### Conditions for subject completion

Full-time form (validity from: 2014/2015 Summer semester)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100 (100) 51
Exercises evaluation Credit 30 (30) 24
Project Project 30  24
Examination Examination 70 (70) 27
Oral Oral examination 70  27
Mandatory attendence parzicipation: Active attendance at exercises at least 80 %. Mandatory tasks require at least 51 points.

Show history

### Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2020/2021 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2019/2020 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2018/2019 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2017/2018 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2016/2017 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2015/2016 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (20) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2015/2016 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (10) Technological management P Czech Ostrava 1 Compulsory study plan
2014/2015 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (20) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2014/2015 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (10) Technological management P Czech Ostrava 1 Compulsory study plan
2013/2014 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (20) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2013/2014 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (10) Technological management P Czech Ostrava 1 Compulsory study plan
2012/2013 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (20) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2012/2013 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (10) Technological management P Czech Ostrava 1 Compulsory study plan
2011/2012 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (20) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2011/2012 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (10) Technological management P Czech Ostrava 1 Compulsory study plan
2010/2011 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2010/2011 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology (10) Technological management P Czech Ostrava 1 Compulsory study plan
2009/2010 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan
2008/2009 (N2301) Mechanical Engineering (2303T002) Mechanical Engineering Technology P Czech Ostrava 1 Compulsory study plan

### Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner