361-0500/06 – Refrigeration Systems and Heat Pumps (CHZ_M)

Gurantor departmentDepartment of Power EngineeringCredits4
Subject guarantordoc. Ing. Mojmír Vrtek, Ph.D.Subject version guarantordoc. Ing. Mojmír Vrtek, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Study languageCzech
Year of introduction2019/2020Year of cancellation
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
NEM239 Ing. Ondřej Němček, Ph.D.
VRT20 doc. Ing. Mojmír Vrtek, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 12+5

Subject aims expressed by acquired skills and competences

Students learn to understand the problems of Refrigeration Systems and Heat Pumps. Students will be able to: - Explain and define basic concepts discussed in the fields of - Clarify the links and connections within the given fields and external relations to other areas of energy - Describe the basic technical equipment used in those fields and explain their principles They will receive: - An overview of the terminology - An overview of the basic technological processes of transfer and transform energy in relevant areas They will be able to: - Perform basic energy balance and capacity calculations in the areas of the issue - Select appropriate ways and methods to achieve the desired objectives in practice

Teaching methods



The subject deals with refrigeration technology and heat pumps. Students will acquire advanced knowledge and skills in the field of theory and practical realization of reversed thermodynamic cycles, namely compressor and sorption refrigeration cycles, in the field of properties of working substances - refrigerants and antifreeze mixtures incl. their ecological aspects. Further, the subject deals with the possibility of using heat pumps for utilisation of low-potential heat.

Compulsory literature:

WHITMAN, W. C; JOHNSON, W. M.; TOMCZYCK, J. A. Refrigeration and Air Conditioning Technology. 5E (5th Bk&CD edition). Thomson Delmar Learning, 2004. ISBN 1401837654.

Recommended literature:

DOSSAT, R. J.,HORAN, T. J. Principles of refrigeneration. 5th ed. New Jersey: Prentice Hall, 2002. ISBN 0130272701. Next study materials: http://fs1.vsb.cz/361/erasmus/refrig/ - non-public access http://fs1.vsb.cz/361/vyuka/vrt/CHZaTC/ - non-public access

Way of continuous check of knowledge in the course of semester

Written - computational example. Oral exam.


http://fs1.vsb.cz/361/vyuka/vrt/CHZaTC_EN/ - non-public access

Other requirements

Another demands for student are not.


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

1. Introduction, purpose and importance of refrigeration and heat pump technology, cryogenics. Phase change materials. 2. Methods of achieving low temperatures, the basic theory of refrigeration cycles. Comparative cycles. 3. Steam flow single stage, with the internal heat exchange. Supercritical cycle. 4. Binary mixtures, evaporation, freezing. Heat transfer fluids. 5. Refrigerants - calculation bases. Characteristics of the main types of refrigerants. 6. Two and multistage refrigeration cycles, cascade conection. 7. Gas cycles. 8. Cycles for the liquefaction of gases. 9. Absorption refrigeration cycles - ammonia - water. 10. Absorption refrigeration cycles - water - lithium bromide. Adsorption cycles. 11. The basic elements of refrigeration circuits - compressors, heat exchangers, control, isolation. 12. Heat pumps - types. 13. Connection to heating systems. Proposal for bivalent point and operating mode. 14. Evaluation of the benefits heat pumps in terms of energy, economic and environmental.

Conditions for subject completion

Full-time form (validity from: 2019/2020 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 40  10
        Examination Examination 60  11
Mandatory attendence parzicipation: min. 80% attendance at seminars

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2021/2022 (N0713A070002) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2021/2022 (N0713A070002) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2020/2021 (N0713A070002) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2020/2021 (N0713A070002) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2019/2020 (N0713A070002) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2019/2020 (N0713A070002) Energy Engineering K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner