361-0507/01 – Compressors, Fans and Pumps (KVC)

Gurantor departmentDepartment of Power EngineeringCredits6
Subject guarantordoc. Ing. Kamil Kolarčík, CSc.Subject version guarantordoc. Ing. Kamil Kolarčík, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageCzech
Year of introduction2004/2005Year of cancellation2010/2011
Intended for the facultiesFSIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
KAM30 prof. Ing. Jaroslav Kaminský, CSc.
KOL10 doc. Ing. Kamil Kolarčík, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+2
Part-time Credit and Examination 16+4

Subject aims expressed by acquired skills and competences

Understanding the working process of compressors and pumps. Description of processes which characterize energy transformation in compressors and pumps. Description of elementary energy and economic criteria of energy transformation evaluation. Discussion of economical and environmental consequences of energy transformation. Solution proposal of management of power engineering processes in compressors´ and pumps´ stations.

Teaching methods

Lectures
Seminars
Individual consultations
Tutorials
Experimental work in labs
Field trip
Teaching by an expert (lecture or tutorial)

Summary

The subject belongs to a group of subjects which closely follows the subjects of thermomechanics, physics and hydromechanics. Students acquire basic knowledge and awareness from the field of study the energy transformation in piston compressors, flow machines, dynamics compressors, fans and displacement and dynamics pumps. Creative thinking is further developed in complex theoretical calculations of the individual components of these energy transformation machines. An integral part of the teaching is the practical measurement of the energetic properties at measuring stands in laboratories. The aim of the subject is to form a professional profile of a graduate who will work as a designer of these energy transformation machines respectively as their operator with both technical and economic knowledge of categories and minimal disruption to the environment.

Compulsory literature:

BLOCH, P. Heinz. A Practical Guide to Compressor Technology – Second Edition. New Jersey: John Wiley & Sons, 2006, 555 p. ISBN: 978-0-471-72793-4. BORREMANS, Marc. Pumps and Compressors. 1. Chichester, West Sussex: John Wiley And Sons, 2019, 512 s. ISBN 978-1-119-53414-3. J. MORAN, Michael, Howard N. SHAPIRO, Daisie D. BOETTNER a Margaret B. BAILEY. Fundamentals of Engineering Thermodynamics, 9th Edition. 9th Edition. New York: John Wiley, 2018. ISBN 978-1-119-39138-8.

Recommended literature:

LOGAN, E.Jr.: Handbook of Turbomachinery (Mechanical Engineering, No. 158) (2 ed.). New York: Marcel Dekker, 2003. ISBN 0-8247-0995-0. KHAN, A., A.; GORLA, R.,S.R. Turbomachinery: Design and Theory. New York: Marcel Dekker, 2003. ISBN 0-8247-0980-2. GIAMPAOLO, T. Compressor Handbook: Principles and Practice. Lilburn: The Fairmont Press, 2010, 361 p. ISBN: 0-88173-616-3 GÜLICH, J. F. Centrifugal Pumps. Berlin, Heidelberg: Springer, 2008, 923 p. ISBN: 978-3-540-73694-3. BRENNEN, E. Christopher. Hydrodynamics of Pumps. Oxford: Oxford University Press, 1994, 293 p. ISBN: 0-19-856442-2. WAHREN, Uno. Practical Introduction to Pumping Technology. Houston: Elsevier Science & Technology Books, 1997, 208 p. ISBN: 0884156869.

Way of continuous check of knowledge in the course of semester

Questions during the lecture. Check knowledge of writing exercises. Results of experimental exercises in the lab. Presentations at the seminar

E-learning

Other requirements

Active participation in exercises with min. 80% of presentations. Processing tasks assigned theme. The defense term paper.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1 Introduction, repeating thermodynamics and hydromechanics. 2 Compressors ideal jet theory, diagram, description of, simplistic arguments. 3 Flow of gases and vapors through nozzles, reheat factor, calculate the main dimensions of nozzles, the critical value, the effect of backpressure. Theory 4 Real jet compressors, boundary layer theory. 5 The ideal degree of radial compressors, description, energy transformation, Euler's equation. 6 Actual degree of radial compressor rotor blade shapes and their influence on the construction of machines, efficiency, pompáž, with a diagram, the energy characteristics. 7 Axial vane compressors, basic characteristics, methods of solution, flow angles, the forces acting on the profile. 8 Ideal stage axial compressor, transition energies, Euler's equation, energy characteristics, velocity triangles. 9 The actual stage axial compressor, losses in energy transformation efficiency with the diagram, the energy characteristics. 10 Fans: axial shift with the degree R + S VS + R, counter-rotating rotors, radial, diagonal 11 Practical operation of compressor stations, measurement, humidity 12 Pumps: Theory. Geodetic height, head, manometric height, limit height of the suction pump. Transformation of energy. 13 Pumps: process measurement, the energy characteristics. Parallel and serial dynamic collaboration tools, working point. Control Performance.

Conditions for subject completion

Part-time form (validity from: 1960/1961 Summer semester, validity until: 2010/2011 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (145) 51 3
        Examination Examination 100  0 3
        Exercises evaluation Credit 45  0 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2010/2011 (N2301) Mechanical Engineering (2302T006) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2010/2011 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2009/2010 (N2301) Mechanical Engineering (2302T006) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2009/2010 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2008/2009 (N2301) Mechanical Engineering (2302T006) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2008/2009 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2007/2008 (N2301) Mechanical Engineering (2302T006) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2007/2008 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2006/2007 (N2301) Mechanical Engineering (2302T006) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2006/2007 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2005/2006 (N2301) Mechanical Engineering (2302T006) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2005/2006 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan
2004/2005 (N2301) Mechanical Engineering (2302T006) Energy Engineering P Czech Ostrava 1 Compulsory study plan
2004/2005 (N2301) Mechanical Engineering (2302T006) Energy Engineering K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2009/2010 Summer