430-4209/02 – Electronics and Electronic Systems (EES)

Gurantor departmentDepartment of Applied ElectronicsCredits4
Subject guarantorprof. Ing. Petr Palacký, Ph.D.Subject version guarantorprof. Ing. Petr Palacký, Ph.D.
Study levelundergraduate or graduateRequirementChoice-compulsory type B
Year1Semestersummer
Study languageEnglish
Year of introduction2019/2020Year of cancellation
Intended for the facultiesFEIIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
HAR0058 Ing. Tomáš Harach, Ph.D.
PAL70 prof. Ing. Petr Palacký, Ph.D.
SLA10 Ing. Václav Sládeček, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 2+15

Subject aims expressed by acquired skills and competences

The purpose of the subject is to obtain and to develope knowledge providing good orientation in area of electronic circuit functioning, power semiconductor converters and application of power electronics and futhermore to get ability of individual analysis and synthesis of electronic circuits and systems of power electronic, which is supposed for the good practical use.

Teaching methods

Lectures
Tutorials
Experimental work in labs

Summary

The subject is focused on the basic understanding of electronic circuit function and power electronics. It contains the introduction of the semiconductor devices theory. The content of this subject is based on knowledge of the elektronic circuit theory and basics theoretical elektronics. The obtained information becomes part of general knowledge of electrical engineer, especially if he is focused on application of electronics.

Compulsory literature:

Brandštetter, P.: Electronics. Study text in English, VŠB-Technical University of Ostrava, 2007.Springer-Verlag Berlin Heidelberg New York, 1986, ISBN 3-540-16138-4. Heumann, K.: Basic Principles of Power Electronics. Springer-Verlag Berlin Heidelberg New York, ISBN 3-540-16138-4, 1986.

Recommended literature:

Horowitz, P. - Hill, W.: The Art of Electronics. Cambridge University Press, ISBN 0-521-37095-7, 1989. Kale, C.O.: Introduction to passive, linear, and digital electronics. Reston Publishing Company, ISBN 0-8359-3263-X, 1985.

Way of continuous check of knowledge in the course of semester

Verification of study: Control tests T1, T2. Conditions for credit: Attendance on laboratory education (100%). Report submission from laboratory exercises. Attendance on control tests. Acquisition of 25 points (minimum). Point rating of exercises: maximum 40 points, test T1 - max. 10 points,test T2 - max. 10 points, laboratory reports = max. 20 points.

E-learning

Other requirements

There are no additional requirements for student.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures: Properties of passive electronic devices. Resistors, condensers, inductors. Properties of active electronic devices. Semiconductor diodes. Thyristors, Triacs. Basic features, characteristics, applications. Properties of active electronic devices. Bipolar transistors. Unipolar transistors. Basic features, characteristics, applications. Supply units. Requirements on individual parts of supply units. Rectifiers. Filtration of directional voltage. Parametric voltage stabilizers. Continuous and switched feedback voltage regulators. Basic features, characteristics, applications. Amplifiers. Setting and stabilization of the static operating point of bipolar transistors and unipolar transistors. Wideband amplifiers for small signal. Transfer parameters. Analysis of the frequency band. Design of amplifiers for small signal. Multistep amplifiers. Direct and alternating coupling. Feedback in electronic circuits. Differential amplifier and its application. Power amplifiers in class A, B, AB. Transistor in the switching mode. Flip-flop circuits. Basic methods of signal modulation. Modulators and mixers. Theory of operational amplifiers. Ideal and real operational amplifier. Basic connections of operational amplifiers. Linear application of operational amplifiers. Nonlinear application of operational amplifiers. Active filters. Generators of periodic signals. Harmonic oscillators. Generators of square wave, triangular and saw signals. Exercises: Repetetion of properties of passive and active electronic devices. Calculation eaxamples of supply units. Calculation examples of parametric voltage stabilizers and feedback voltage regulators. Design examples of circuits for setting and stabilization of the static operating point of transistor. Design examples of wideband amplifiers. Test T1 - Basic knowledge from area of supply units. Aplication examples of differential amplifiers and operational amplifiers. Test T2 - Amplifiers, power amplifiers. Laboratories: Measurement of basic connections of rectifiers. Measurement of characteristics of parametric voltage stabilizers. Measurement of basic types of feedback voltage regulators. Measurement of feedback voltage in applications. Flip-flop circuits. Modulators. Linear applications of operational amplifiers. Nonlinear applications of operational amplifiers. Harmonic signal generators and function generators. Waveform generators. Projects: Laboratory reports (10 hours).

Conditions for subject completion

Full-time form (validity from: 2019/2020 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 40 (40) 25
                Test č.1 Written test 10  1
                Test č. 2 Written test 10  1
                Výpočetní projekt Project 10  1
                Laboratorní protokoly Laboratory work 10  1
        Examination Examination 60 (60) 20 3
                Písemná část zkoušky Written examination 40  15
                Ústní část zkoušky Oral examination 20  5
Mandatory attendence participation: Attendance on laboratory education (100%).

Show history

Conditions for subject completion and attendance at the exercises within ISP: Completion of all mandatory tasks within individually agreed deadlines.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2024/2025 (N0988A060002) Biomedical Engineering P English Ostrava 1 Choice-compulsory type B study plan
2023/2024 (N0988A060002) Biomedical Engineering P English Ostrava 1 Choice-compulsory type B study plan
2022/2023 (N0988A060002) Biomedical Engineering K English Ostrava 1 Choice-compulsory type B study plan
2022/2023 (N0988A060002) Biomedical Engineering P English Ostrava 1 Choice-compulsory type B study plan
2021/2022 (N0988A060002) Biomedical Engineering P English Ostrava 1 Choice-compulsory type B study plan
2021/2022 (N0988A060002) Biomedical Engineering K English Ostrava 1 Choice-compulsory type B study plan
2020/2021 (N0988A060002) Biomedical Engineering P English Ostrava 1 Choice-compulsory type B study plan
2020/2021 (N0988A060002) Biomedical Engineering K English Ostrava 1 Choice-compulsory type B study plan
2019/2020 (N0988A060002) Biomedical Engineering P English Ostrava 1 Choice-compulsory type B study plan
2019/2020 (N0988A060002) Biomedical Engineering K English Ostrava 1 Choice-compulsory type B study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.