448-0316/01 – Power Semiconductor Systems (VPS)

Gurantor departmentDepartment of ElectronicsCredits8
Subject guarantorprof. Ing. Petr Chlebiš, CSc.Subject version guarantorprof. Ing. Petr Chlebiš, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageCzech
Year of introduction2006/2007Year of cancellation2009/2010
Intended for the facultiesFEIIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
H1L20 prof. Ing. Petr Chlebiš, CSc.
KRN011 Ing. Petr Krňa, Ph.D.
PAV15 Ing. Tomáš Pavelek, Ph.D.
SZO040 Ing. Josef Szotkowski
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 4+3
Part-time Credit and Examination 4+25

Subject aims expressed by acquired skills and competences

Knowledge obtained in this subject enable students good orientation in power electronics applications, e.g. applications with UPS, welding power sources, AC power regulators and in applications with electrical drives. This subject enables students explore parts of power semiconductor systems and apply obtained information by construction in practice. Information obtained in this subject is part of general knowledge of electrotechnic educated expert.

Teaching methods

Summary

Knowledge obtained in this subject offer students good orientation in the branch of power electronics applications, e.g. applications with UPS, welding power sources, AC power regulators and in applications with electrical drives. This subject enables students to explore parts of power semiconductor systems and to apply obtained information by constructing in practice. Knowledge obtained in this subject is a part of a general knowledge of electrotechnic educated expert.

Compulsory literature:

Heumann, K.: Basic Principles of Power Electronics. Springer-Verlag Berlin Heidelberg New York, 1986, ISBN 3-540-16138-4. Rashid, M. H.: Power Electronics. Prentice-Hall International, Inc., 1993, ISBN 0-13-334483-5.

Recommended literature:

http://fei.vsb.cz/kat448/kat_448.htm

Way of continuous check of knowledge in the course of semester

Verification of study: Checktests TEST no. 1, TEST no. 2 (s. exercises) Conditions for credit: 100% practical instruction participation. Extraordinary substitute just on the base of previous teacher acceptance. Delivering of practical instruction course works on schedule = 1 week after appropriate practical instruction 100% check tests participation on schedule (exact date will notice minimal 1 week before). It´s possible to repeat each check test one time. In case of repeating check test it´s possible to obtain just 80% of conventional maximal amount of points! Minimal amount of received points is 25 from 40 points. Points classification of practical instructions - maximal 40 points, divided to: T1 = max. 10 points T2 = max. 10 points Course works of practice instructions = max. 20 points

E-learning

Other requirements

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures: Modern switching devices, IGBT, GTO and IGCT. Phase control of DC systems - live commutated rectifier and electric drives and welding power sources applications. Pulse converters, principals of working and applications. DC switching sources, pulse regulators, switching sources efficiency. Uninterable power sources (UPS), battery charge sources, welding power sources. Voltage and current inverters, principles and applications. Frequency converters, voltage and current type of frequency converters, applications in electric drives. HF inverters for heating. Active filters, high power converters. Direct frequency converters, cycloconverters, matrix converters. Phase and cycling controlling of AC current, AC switches. Soft starts for asynchronous motors. Design and construction of converters, examples of applications. Progress in power semiconductor systems. Exercises: Principles of dimensioning power semiconductor components. Controlled and uncontrolled rectifiers and examples. TEST no. 1. Semiconductor components and power rectifiers. Examples and theory practicing of pulse converters. Design of buck- and step down pulse converter. Design of pulse transformer, power and control unit of switched source. Examples and theory practising of voltage invertors. Practical illustrations of inverters and applications. TEST no. 2. Pulse converters, voltage and current invertors. AC current controller activity analysis. Laboratories: Controlled rectifier laboratory task (no. 1). Controlled rectifier laboratory task (no. 2). Pulse converter laboratory task (no. 3). Voltage inverters laboratory task (no. 4). Frequency inverter laboratory task (no. 5). Projects: Laboratory tasks and elaboration of gained results: Controlled rectifier laboratory task (no. 1, 2), Pulse converter laboratory task (no. 3), Voltage inverters laboratory task (no. 4), Frequency inverter laboratory task (no. 5). Computer labs: PSpice modelling - basic models of power devices. Loses calculation with using PSpice modelling. SW PSpice available in English version.

Conditions for subject completion

Full-time form (validity from: 1960/1961 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51 3
        Exercises evaluation Credit 40 (40) 0 3
                Laboratory work Laboratory work 5  2 2
                Laboratorní úloha č.2 Laboratory work 5  2 2
                Laboratorní úloha č.3 Laboratory work 5  2
                Laboratorní práce č.4 Laboratory work 5  2
                Kontrolní test č.1 Written test 10  0 3
                Kontrolní test č.2 Written test 10  0
        Examination Examination 60 (60) 0 3
                Written examination Written examination 20  0 3
                Oral Oral examination 40  0 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2009/2010 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering P Czech Ostrava 1 Optional study plan
2009/2010 (N2649) Electrical Engineering (2612T015) Electronics P Czech Ostrava 1 Compulsory study plan
2009/2010 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering P Czech Ostrava 1 Optional study plan
2009/2010 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering K Czech Ostrava 1 Optional study plan
2009/2010 (N2649) Electrical Engineering (2612T015) Electronics K Czech Ostrava 1 Compulsory study plan
2009/2010 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering K Czech Ostrava 1 Optional study plan
2008/2009 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering P Czech Ostrava 1 Optional study plan
2008/2009 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering K Czech Ostrava 1 Optional study plan
2008/2009 (N2649) Electrical Engineering (2612T015) Electronics P Czech Ostrava 1 Compulsory study plan
2008/2009 (N2649) Electrical Engineering (2612T015) Electronics K Czech Ostrava 1 Compulsory study plan
2008/2009 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering P Czech Ostrava 1 Optional study plan
2008/2009 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering K Czech Ostrava 1 Optional study plan
2007/2008 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering P Czech Ostrava 1 Optional study plan
2007/2008 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering K Czech Ostrava 1 Optional study plan
2007/2008 (N2649) Electrical Engineering (2612T015) Electronics P Czech Ostrava 1 Compulsory study plan
2007/2008 (N2649) Electrical Engineering (2612T015) Electronics K Czech Ostrava 1 Compulsory study plan
2007/2008 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering P Czech Ostrava 1 Optional study plan
2007/2008 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering K Czech Ostrava 1 Optional study plan
2006/2007 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering P Czech Ostrava 1 Optional study plan
2006/2007 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering K Czech Ostrava 1 Optional study plan
2006/2007 (N2649) Electrical Engineering (2612T015) Electronics P Czech Ostrava 1 Compulsory study plan
2006/2007 (N2649) Electrical Engineering (2612T015) Electronics K Czech Ostrava 1 Compulsory study plan
2006/2007 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering P Czech Ostrava 1 Optional study plan
2006/2007 (N2649) Electrical Engineering (3907T001) Electrical Power Engineering K Czech Ostrava 1 Optional study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2009/2010 Summer
2009/2010 Winter