448-0501/04 – Electronics (ELB)

Gurantor departmentDepartment of ElectronicsCredits6
Subject guarantorprof. Ing. Pavel Brandštetter, CSc.Subject version guarantorprof. Ing. Pavel Brandštetter, CSc.
Study levelundergraduate or graduateRequirementCompulsory
Study languageCzech
Year of introduction2009/2010Year of cancellation2009/2010
Intended for the facultiesUSPIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
BRA30 prof. Ing. Pavel Brandštetter, CSc.
DOB120 Ing. Marek Dobrovský
SLA10 Ing. Václav Sládeček, Ph.D.
TOM377 Ing. Jan Tománek
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 3+3
Part-time Credit and Examination 3+18

Subject aims expressed by acquired skills and competences

The purpose of the subject is to obtain and to develope knowledge providing good orientation in area of electronic circuit functioning, power semiconductor converters and application of power electronics and futhermore to get ability of individual analysis and synthesis of electronic circuits and systems of power electronic, which is supposed for the good practical use.

Teaching methods


The subject is focused on the basic understanding of electronic circuit function and power electronics. It contains the introduction of the semiconductor devices theory. The content of this subject is based on knowledge of the elektronic circuit theory and basics theoretical elektronics. The obtained information becomes part of general knowledge of electrical engineer, especially if he is focused on application of electronics.

Compulsory literature:

Brandštetter, P.: Electronics. Study text in English, VŠB-Technical University of Ostrava, 2007.Springer-Verlag Berlin Heidelberg New York, 1986, ISBN 3-540-16138-4. Heumann, K.: Basic Principles of Power Electronics. Springer-Verlag Berlin Heidelberg New York, ISBN 3-540-16138-4, 1986.

Recommended literature:

Horowitz, P. - Hill, W.: The Art of Electronics. Cambridge University Press, ISBN 0-521-37095-7, 1989. Kale, C.O.: Introduction to passive, linear, and digital electronics. Reston Publishing Company, ISBN 0-8359-3263-X, 1985.

Way of continuous check of knowledge in the course of semester

Verification of study: Control tests T1, T2. Conditions for credit: Attendance on laboratory education (100%). Report submission from laboratory exercises. Attendance on control tests. Acquisition of 25 points (minimum). Point rating of exercises: maximum 40 points, test T1 - max. 10 points,test T2 - max. 10 points, laboratory reports = max. 20 points.


Other requirements


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

Lectures: Properties of passive electronic devices. Resistors, condensers, inductors. Properties of active electronic devices. Semiconductor diodes. Basic features, characteristics, applications. Properties of active electronic devices. Bipolar transistors. Unipolar transistors. Basic features, characteristics, applications. Supply units. Requirements on individual parts of supply units. Rectifiers. Filtration of directional voltage. Parametric voltage stabilizers. Continuous and switched feedback voltage regulators. Basic features, characteristics, applications. Amplifiers. Setting and stabilization of the static operating point of bipolar transistors and unipolar transistors. Wideband amplifiers for small signal. Transfer parameters. Analysis of the frequency band. Solution of amplifiers for small signal. Multistep amplifiers. Direct and alternating coupling. Feedback in electronic circuits. Differential amplifier and its application. Power amplifiers in class A, B, AB. Transistor in the switching mode. Flip-flop circuits. Basic methods of signal modulation. Modulators and mixers. Theory of operational amplifiers. Ideal and real operational amplifier. Basic connections of operational amplifiers. Linear application of operational amplifiers. Nonlinear application of operational amplifiers. Active filters. Generators of periodic signals. Harmonic oscillators. Generators of square wave, triangular and saw signals. Power switching devices. Power uncontrolled rectifiers and their applications. Power controlled rectifiers and their applications. Principles of control circuits of controlled rectifiers. DC converters, circuit and their applications. Principles of control circuits of DC converters. Direct frequency converters, cycloconverters. Frequency converters with voltage and current DC link and their applications. Control methods of the output voltage and current. Exercises: Repetetion of properties of passive and active electronic devices. Calculation eaxamples of supply units. Calculation examples of parametric voltage stabilizers and feedback voltage regulators. Design examples of circuits for setting and stabilization of the static operating point of transistor. Design examples of wideband amplifiers. Test T1 - Basic knowledge from area of supply units. Aplication examples of differential amplifiers and operational amplifiers. Test T2 - Amplifiers, power amplifiers. Laboratories: Measurement of basic connections of rectifiers. Measurement of characteristics of parametric voltage stabilizers. Measurement of basic types of feedback voltage regulators. Measurement of feedback voltage in applications. Flip-flop circuits. Modulators. Linear applications of operational amplifiers. Nonlinear applications of operational amplifiers. Harmonic signal generators and function generators. Waveform generators. Projects: Laboratory reports.

Conditions for subject completion

Part-time form (validity from: 2009/2010 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100  51
        Exercises evaluation Credit  (40)
                Test No.1 Written test 10  5
                Test No.2 Written test 10  5
                Laboratory reports Laboratory work 20  10
        Examination Examination  (60)
                Written exam Written examination 40  15
                Oral exam Oral examination 20  5
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2009/2010 (B3943) Mechatronics P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3943) Mechatronics K Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner