450-2042/01 – Grouding of Cybernetics (ZK)

Gurantor departmentDepartment of Cybernetics and Biomedical EngineeringCredits5
Subject guarantorprof. Ing. Vilém Srovnal, CSc.Subject version guarantorprof. Ing. Vilém Srovnal, CSc.
Study levelundergraduate or graduateRequirementChoice-compulsory
Study languageCzech
Year of introduction2010/2011Year of cancellation2010/2011
Intended for the facultiesFEIIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
OZA77 doc. Ing. Štěpán Ožana, Ph.D.
SRO30 prof. Ing. Vilém Srovnal, CSc.
SRO37 Ing. Vilém Srovnal, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+3
Part-time Credit and Examination 2+12

Subject aims expressed by acquired skills and competences

The goal of subject is introduce bachelor students on analyze and design of dynamic systems and feedback control systems. Students will be ready for practical analyzes and designs of simple linear and nonlinear feedback control systems using computers and simulation program MATLAB and SIMULINK. They will be also ready for base analysis of optimal and adaptive feedback control systems This subject is suitable for students another branches of study, which want familiarize control system theory for bachelor study.

Teaching methods

Individual consultations
Experimental work in labs
Project work


There are explaining base notions and characteristics of control systems. Learners are introduce on analyze continuous and discrete linear dynamic systems. Analyze of linear control systems in frequency-domain and time-domain. Stability of control systems, static accuracy and control quality. There are explaining designs of continuos-time and discrete-time linear control systems. Learners are briefly introduce on nonlinear feedback control systems, optimal control systems and adaptive control systems.

Compulsory literature:

Srovnal,V: Grouding of Cybernetics. Student text book web site FEI, 2007

Recommended literature:

Franklin,G.F.,at all.:Digital Control of Dynamic Systems. Adison-Wesley 1992. Lewis,F.L.: Optimal Control. John Wiley&Sons 1992 Ogata,K.:Modern Control Engineering. Prentice-Hall 1990. Ogata,K.:Discrete-time Control Systems.Prentice-Hall 1987. Shinners,S.M.:Modern Control System Theory and Design. John Wiley&Sons 1986

Way of continuous check of knowledge in the course of semester

Verification of study: One credit test and three individual tasks or one wasted individual project. Days of delivery individual works as electronic or writing documents (5,10 and 14 week or 14 week for project) Area and form . Individual works contain a model program and documentation for the laboratory computer. Students demonstrate their solving tasks on computers. Credit test confirms theoretic knowledges of students. Closing Test - writing part of the examination . Theoretical part of test consist 20 questions, which verify global student's knowledge . Practice part of test (6 examples) student prepares on paper or on computer. Total test time is 120 min. Conditions for credit: Study Classification . Exercise credits - student is classifying on base test 0-14 points and 3 individual works 0-7 points or individual project 0-21 points. Award of 14 th. week. Condition for receiving is min. 10 points, maximum of receiving points is 35. Examination - Writing part - Closing test - theoretical part 0-20 points, practical part 0-35 points, total 0-55 points. Oral part 0-10 point. Total classification 51-100 points according study rules.


Other requirements


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

Lectures: General Concept of Control System Design. Types of Control System. Characteristics of Control Systems. Examples of Regulation. Dynamic Systems. Continuos-time linear systems analysis. Description of continuous dynamic systems. Block diagrams and modeling of continuos-time linear systems. Basic types of continuous dynamic systems and their characteristics. Discrete-time dynamic systems analysis. Description of discrete-time dynamic systems. Basic Types of Discrete-time Systems and their characteristics. Discretization of Continuos-time Systems. Sampled Data Systems. Frequency Analysis of Sampling. Hold elements. Stability of Continuos-time Linear Systems. Stability of Discrete-time Linear Systems. Methods of systems identification. Structures of Feedback Control Systems. Characteristic of Linear Feedback Control Systems. Analysis of Feedback Control Systems . Standard Transfer Functions of Feedback Control Systems .. Stability Linear Feedback Control Systems. Nyquist Stability Criterion. Analysis of Continuos-time Linear Control Systems . Static accuracy . Dynamic Characteristics . Quality of Regulation. Integral Criterions of Quality. Frequency Analysis. Continuos-time Linear Control Systems Design. Methods of Designs . Forked Feedback Control Systems with Secondary Controlled Quantity, with Secondary Actuating Quantity, with Noise Measurement and with Model of Controlled System . Discrete-time (Digital) Linear Control Systems design with sampling. Continuos-time Correction Unit Design. Digital Correction Unit Design . Ragazzini's Method . Desired Characteristic of Control Transfer Function. Nonlinear Feedback Control Systems . Characteristics of Nonlinearities. Linearizing Approximations . Nonlinear Control Systems Stability . Optimal Control Systems . Optimality Criterions . Static and Dynamic Optimization . Extremal controllers . Adaptive Control Systems . Adaptive Systems Structure. Adaptive Identification and Control with Model. Laboratories: Control of Temperature on the Physical Model. Rotation Speed Contol of DC Drive. Position Contol of Ball on Beam. Projects: All students received 3 individual projects, which elaborate with using PC. Computer labs: Introductions to practice. Modeling of Continuos Linear Systems on PC. Conventional Continuos Linear Systems Analysis. PC Verification. Homework No. 1: Simulation of Continuous-Time Linear Systems on PC. Conventional Discrete-Time Linear Systems Analysis. PC Simulation. Modeling of Continuos Linear Systems and Discrete-Time Linear Systems in State-Space on PC . Graphical and Numerical Criterions of Stability. PC Verification. Verification of Systems Identification Control Systems Analysis , PC Simulation. Continuous Control Systems Design. PC Simulation . Digital Correction Unit Design. Modeling of Discrete-Time Linear Control Systems on PC. Non-linear Control Systems Design. PC Simulation.

Conditions for subject completion

Full-time form (validity from: 2010/2011 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100  51
        Exercises evaluation Credit  
        Examination Examination  
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2010/2011 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering P Czech Ostrava 1 Choice-compulsory study plan
2010/2011 (N2649) Electrical Engineering (2601T004) Measurement and Control Engineering K Czech Ostrava 1 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner