450-2093/02 – Industrial Robotics I (PR I)
Gurantor department | Department of Cybernetics and Biomedical Engineering | Credits | 4 |
Subject guarantor | doc. Ing. Bohumil Horák, Ph.D. | Subject version guarantor | doc. Ing. Bohumil Horák, Ph.D. |
Study level | undergraduate or graduate | Requirement | Choice-compulsory type B |
Year | 3 | Semester | summer |
| | Study language | English |
Year of introduction | 2019/2020 | Year of cancellation | |
Intended for the faculties | FEI | Intended for study types | Bachelor |
Subject aims expressed by acquired skills and competences
The aim of the course is to provide students with basic information in the field of mechanization and automation of production machines, industrial robotics and robot technology. After studying the module the student should be able to describe basic principles of function, construction and operation of industrial robots, their subsystems and structural elements. He should be able to design a robot / robot control system, program it and incorporate it into a robotic cell.
Teaching methods
Lectures
Individual consultations
Experimental work in labs
Project work
Other activities
Summary
The subject is focused on historical development, basic description of structures, topologies, subsystems and properties of industrial robots and manipulators. It provides overview and classification of mechanical constructions, motion, control and sensor subsystems. It describes their current application in production, the structure of workplaces, significant parameters, economic efficiency and perspectives and social aspects of deployment. In the practical part of laboratory measurements it deals with programming-modeling and control of industrial robot movements in basic tasks.
Compulsory literature:
Recommended literature:
Way of continuous check of knowledge in the course of semester
Combined examination (written and oral).
Continuous Study Control:
2 tests in the 5th and 10th weeks of the semester. Continuous realization of the semestral work.
Conditions for granting the credit:
Passing the tests and submitting the technical documentation and realizing the semestral project 12-45 points.
E-learning
Other requirements
There are no further requirements.
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
Lectures:
1. Introduction to Robot Technology / Robot Technology. Mechanization and automation of production machines. Mechanization and automation of side-effects of the production process.
2. History of robotics, development of handling equipment.
3. Design of manipulators and industrial robots - functional groups IRaM. structure of IRaM, coordinate systems, coordinate transformation, representation of rotation and displacement, homogeneous coordinates
4. Design of manipulators and industrial robots - kinematic structures IRaM, object path, path correction, position / repeatability, IRaM static, object orientation, direct / inverse kinematics, differential kinematics, robot singular states, kinematic description of practical robotic workplace.
5. Design of manipulators and industrial robots - influence of the drive on the arrangement, design and technological limitations, examples of positioning mechanisms.
6. Design of manipulators and industrial robots - dynamics of IRaM, rigidity of manipulation devices, direct / inverse dynamic task (at the level of task formulation).
7. Design of manipulators and industrial robots - IRaM drives - external / internal drives, drive transformation block, electric drives, hydraulic drives, pneumatic drives, combined drives, determination of drive parameters.
8. Construction of manipulators and industrial robots - IRaM motion units, translational, rotary, screw.
9. Construction of manipulators and industrial robots - IRaM output heads, gripping / technological, mechanical, vacuum, magnetic, special.
10. IRaM activity control, control system structure, feedback, position control, sequence control.
11. IRaM sensors - general properties, human sensors, robot system sensors, external / internal sensors, position sensors, speed, acceleration, force, pressure, radiation, temperature, flow, examples of robot sensors.
12. Application of IRaM in production, structure of workplaces with IRaM, parameters of IRaM, economic efficiency of IRaM deployment, perspectives and social aspects of IRaM deployment.
Labs:
Robotics laboratories are designed for groups of up to 10 students who solve practical robotic tasks individually or in pairs during the semester. Students will be familiar with practical robotics (industrial robot, manipulator) and with the methods of virtual programming of industrial robots and robotic workplaces, using the knowledge gained in basic subjects (eg mathematics, physics, electronics, software development).
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks