456-0107/01 – Computer Graphics and CAD (PGC)

Gurantor departmentDepartment of Computer ScienceCredits4
Subject guarantordoc. Dr. Ing. Eduard SojkaSubject version guarantordoc. Dr. Ing. Eduard Sojka
Study levelundergraduate or graduateRequirementChoice-compulsory
Year4Semesterwinter
Study languageCzech
Year of introduction1998/1999Year of cancellation2002/2003
Intended for the facultiesFEIIntended for study typesMaster
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

Subject aims expressed by acquired skills and competences

The goal of the subject is to deepen students' knowledge of computer graphics.

Teaching methods

Summary

In the subject, the following topics are discussed: photorealistic methods of rendering, solid modelling and its applications, hard-ware support for computer graphics, finite element method in CAD.

Compulsory literature:

Recommended literature:

Way of continuous check of knowledge in the course of semester

Conditions for credit: The programs that form the content of exercises must be worked out.

E-learning

Další požadavky na studenta

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures: Ray tracing. Reducing time complexity of the method. Special effects in ray tracing. Radiosity method. Determining form factors. Theoretical foundations of solid modelling: Topological spaces, topological mappings. n-manifold in Em. Orientability. Euler formula and its application. Regularised boolean operations. Boundary model of solid and its implementation. Euler operators. Rendering objects represented by a boundary model. Realisation of boolean operations. CSG model and its implementation. Rendering objects represented by a CSG model. Another methods of modelling solids: Space enumeration, octant trees, BSP trees. Deformable models. Uniform and non-uniform, rational and non-rational B-spline curves and surfaces. Theoretical foundations of the finite element method: Hilbert's spaces, operators, functionals and their properties. Energetical spaces. Ritz's method. Deriving the eqations of FEM for one-dimensional problem. Deriving the eqations of FEM for more-dimensional problem. Examples of the problems that can be solved by making use of FEM. Hardware support of 3D rendering pipeline in Silicon Graphics workstations. Computer labs: The students are required to work out a program that falls (according to students' choice) into one of the following areas: ray tracing, radiosity method, modelling the curves and surfaces, namely NURBS. Furthermore, tiny tasks falling into boundary representation of solids, Euler's operators, Ritz's method are assigned.

Conditions for subject completion

Full-time form (validity from: 1960/1961 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100 (145) 51
        Examination Examination 100  0
        Exercises evaluation Credit 45  0
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2002/2003 (M2612) Electrical Engineering and Computer Science (2601T004) Measurement and Control Engineering P Czech Ostrava Choice-compulsory study plan
2002/2003 (M2612) Electrical Engineering and Computer Science (2612T018) Electronics and Communication Technology P Czech Ostrava Choice-compulsory study plan
2002/2003 (M2612) Electrical Engineering and Computer Science (2642T004) Electrical Machines, Apparatus and Drives (10) Elektrické stroje a přístroje P Czech Ostrava Choice-compulsory study plan
2002/2003 (M2612) Electrical Engineering and Computer Science (2642T004) Electrical Machines, Apparatus and Drives (20) Elektrické pohony a výkonová elektronika P Czech Ostrava Choice-compulsory study plan
2002/2003 (M2612) Electrical Engineering and Computer Science (3902T023) Computer Science P Czech Ostrava Choice-compulsory study plan
2002/2003 (M2612) Electrical Engineering and Computer Science (3907T001) Electrical Power Engineering P Czech Ostrava Choice-compulsory study plan
2002/2003 (M2612) Electrical Engineering and Computer Science (3902T023) Computer Science P Czech Ostrava 4 Choice-compulsory study plan
2001/2002 (M2612) Electrical Engineering and Computer Science (2601T004) Measurement and Control Engineering P Czech Ostrava Choice-compulsory study plan
2001/2002 (M2612) Electrical Engineering and Computer Science (2612T018) Electronics and Communication Technology P Czech Ostrava Choice-compulsory study plan
2001/2002 (M2612) Electrical Engineering and Computer Science (2642T004) Electrical Machines, Apparatus and Drives (10) Elektrické stroje a přístroje P Czech Ostrava Choice-compulsory study plan
2001/2002 (M2612) Electrical Engineering and Computer Science (2642T004) Electrical Machines, Apparatus and Drives (20) Elektrické pohony a výkonová elektronika P Czech Ostrava Choice-compulsory study plan
2001/2002 (M2612) Electrical Engineering and Computer Science (3902T023) Computer Science P Czech Ostrava Choice-compulsory study plan
2001/2002 (M2612) Electrical Engineering and Computer Science (3907T001) Electrical Power Engineering P Czech Ostrava Choice-compulsory study plan
2001/2002 (M2612) Electrical Engineering and Computer Science (3902T023) Computer Science P Czech Ostrava 4 Choice-compulsory study plan
2000/2001 (M2612) Electrical Engineering and Computer Science (3902T023) Computer Science P Czech Ostrava 4 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner