457-0308/01 – Equations of Mathematical Physics (RMFPM)

Gurantor departmentDepartment of Applied MathematicsCredits4
Subject guarantorprof. RNDr. Marek Lampart, Ph.D.Subject version guarantorprof. RNDr. Marek Lampart, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year2Semesterwinter
Study languageCzech
Year of introduction2003/2004Year of cancellation2009/2010
Intended for the facultiesFEIIntended for study typesFollow-up Master
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 2+2

Subject aims expressed by acquired skills and competences

The main aim of the subject is to formulate classical partial differential equations motivated by physical phenomena and to use classical methods for their solutions.

Teaching methods

Lectures
Individual consultations
Tutorials

Summary

This course is devoted to the analytical methods of the solution of the partial differentia equations. All the methods will give us fruitful imagination of the qualitative behavior of the mathematical modeling. This information will be very useful tor the future modeling of more complicated problems. During this course there will be given standard set of the classical partial differential equations and their properties. Also stability and uniqueness will be discussed.

Compulsory literature:

P. Drábek, G. Holubová: Parciální diferenciální rovnice (Úvod do klasické teorie). Skripta ZČU Plzeň, 2001. J. Franců: Parciální diferenciální rovnice. Skripta VUT Brno, 2000. S. Míka, A. Kufner: Parciální diferenciální rovnice I. Stacionární rovnice. Edice MVŠT, sešit XX, SNTL Praha, 1983. J. Barták, L. Herrmann, V. Lovicar, O. Vejvoda: Parciální diferenciální rovnice II. Evoluční rovnice. Edice MVŠT, sešit XXI, SNTL Praha, 1988. W. A. Strauss: Partial Differential Equations (An Introduction), John Wiley & Sons, Inc., New York 1992.

Recommended literature:

Textbook for students of the PDE.

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Rovnice 1. řádu, Cauchyova úloha, charakteristika rovnice. Cauchyova úloha pro rovnice vyšších řádů. Klasifikace rovnic 2. řádu, převod na kanonický tvar. Odvození vybraných rovnic matematické fyziky, příklady formulací počátečních a okrajových úloh: rovnice vedení tepla, rovnice difúze, vlnová rovnice, Laplaceova a Poissonova rovnice, rovnice průhybu membrány, rovnice stacionárního vedení tepla popř. elektrického proudu. Metoda charakteristik. Fourierova metoda. Použití integrálních transformací. Metoda Greenovy funkce. Principy maxima a jednoznačnost úloh. Metoda potenciálů.

Conditions for subject completion

Full-time form (validity from: 1960/1961 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51 3
        Examination Examination 70  0 3
        Exercises evaluation Credit 30 (30) 10 1
                1. Písemka Written test 15  0 1
                2. Písemka Written test 15  0 1
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2003/2004 (N2646) Information Technology (1103T021) Computational Mathematics P Czech Ostrava 2 Compulsory study plan
2003/2004 (N2646) Information Technology (1103T021) Computational Mathematics K Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction

Předmět neobsahuje žádné hodnocení.