457-0308/03 – Equations of Mathematical Physics (RMFPM)

Gurantor departmentDepartment of Applied MathematicsCredits3
Subject guarantorprof. RNDr. Marek Lampart, Ph.D.Subject version guarantorprof. RNDr. Marek Lampart, Ph.D.
Study levelundergraduate or graduateRequirementChoice-compulsory
Study languageCzech
Year of introduction2007/2008Year of cancellation2009/2010
Intended for the facultiesUSPIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
KRA04 Mgr. Bohumil Krajc, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+1
Part-time Credit and Examination 2+1

Subject aims expressed by acquired skills and competences

The main aim of the subject is to formulate classical partial differential equations motivated by physical phenomena and to use classical methods for their solutions.

Teaching methods

Individual consultations


This course is devoted to the analytical methods of the solution of the partial differentia equations. All the methods will give us fruitful imagination of the qualitative behavior of the mathematical modeling. This information will be very useful tor the future modeling of more complicated problems. During this course there will be given standard set of the classical partial differential equations and their properties. Also stability and uniqueness will be discussed.

Compulsory literature:

P. Drábek, G. Holubová: Parciální diferenciální rovnice (Úvod do klasické teorie). Skripta ZČU Plzeň, 2001. J. Franců: Parciální diferenciální rovnice. Skripta VUT Brno, 2000. S. Míka, A. Kufner: Parciální diferenciální rovnice I. Stacionární rovnice. Edice MVŠT, sešit XX, SNTL Praha, 1983. J. Barták, L. Herrmann, V. Lovicar, O. Vejvoda: Parciální diferenciální rovnice II. Evoluční rovnice. Edice MVŠT, sešit XXI, SNTL Praha, 1988. W. A. Strauss: Partial Differential Equations (An Introduction), John Wiley & Sons, Inc., New York 1992.

Recommended literature:

Textbook for students of the PDE.

Way of continuous check of knowledge in the course of semester


Other requirements


Subject has no prerequisities.


Subject has no co-requisities.

Subject syllabus:

Conditions for subject completion

Full-time form (validity from: 1960/1961 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 30 (30) 10
                1. Písemka Written test 15  0
                2. Písemka Written test 15  0
        Examination Examination 70  0
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2009/2010 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Choice-compulsory study plan
2008/2009 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Choice-compulsory study plan
2007/2008 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner