457-0910/03 – Variational Methods (VM)

Gurantor departmentDepartment of Applied MathematicsCredits6
Subject guarantorprof. RNDr. Jiří Bouchala, Ph.D.Subject version guarantorprof. RNDr. Jiří Bouchala, Ph.D.
Study levelpostgraduateRequirementChoice-compulsory
Year1Semestersummer
Study languageCzech
Year of introduction1992/1993Year of cancellation2009/2010
Intended for the facultiesFEIIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
BOU10 prof. RNDr. Jiří Bouchala, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 10+10

Subject aims expressed by acquired skills and competences

Students, who pases the course, will be able to define a weak solution for various kinds of elliptic boundary value problems, to prove the existence of a unique solution and master a couple of approaches to solve it numerically.

Teaching methods

Lectures
Tutorials
Project work

Summary

The course is offered throughout the university. Within the course the students are introduced into weak formulations of various kinds of elliptic boundary value problems, solvability conditions as well as fundamental properties of the weak solutions. The correct understanding of these notions is necessary to succeed with solution of various engineering problems.

Compulsory literature:

K. Rektorys: Variační metody v inženýrských problémech a v problémech matematické fyziky, Academia, Praha, 1999. O. John, J. Nečas: Rovnice matematické fyziky, MFF UK, Praha, 1977. M. Renardy, R. C. Rogers: An introduction to partial differential equations, Springer-Verlag, New York, 1993. S. Míka, A. Kufner: Parciální diferenciální rovnice I. Stacionární rovnice, SNTL, Praha, 1983. E. Zeidler: Applied Functional Analysis, Springer-Verlag, New York, 1995.

Recommended literature:

Additional study materials

Way of continuous check of knowledge in the course of semester

Podmínky udělení zápočtu: Aktivní účast na cvičeních. Vyřešení zadaných problémů.

E-learning

Other requirements

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Přednášky: Lebesgueův integrál. Lebesgueovy prostory. Zobecněné funkce (distribuce). Zobecněné derivace. Sobolevovy prostory. Stopy funkcí na hranici. Slabá řešení okrajových úloh. Existence a jednoznačnost slabého řešení. Regularita slabého řešení. Funkcionál energie. Spektrum. Cvičení: Opakování. Vektorové, metrické a normované prostory, prostory se skalárním součinem. Operátory v prostorech funkcí. Lebesgueova míra, její vlastnosti. Lebesgueův integrál - jeho vlastnosti a výpočet. Vztah Lebesgueova, Riemannova a Newtonova integrálu. Lebesgueovy prostory. Distribuce a jejich derivace. Vztah klasické a zobecněné derivace. Sobolevovy prostory. Formulace a důkaz existence slabého řešení daných lineárních eliptických okrajových úloh. Galerkinova a Ritzova metoda. Projekty: Projekty zadávané studentům obsahují sady jednoduchých problémů, jejichž řešení usnadní správné pochopení probírané látky.

Conditions for subject completion

Part-time form (validity from: 1960/1961 Summer semester, validity until: 2012/2013 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51 3
        Examination Examination 70  0 3
        Exercises evaluation Credit 30 (30) 15
                projekt Project 15  0
                test Written test 15  0
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2009/2010 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 1 Choice-compulsory study plan
2009/2010 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 1 Choice-compulsory study plan
2008/2009 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 1 Choice-compulsory study plan
2008/2009 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 1 Choice-compulsory study plan
2007/2008 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 1 Choice-compulsory study plan
2007/2008 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 1 Choice-compulsory study plan
2006/2007 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 1 Choice-compulsory study plan
2006/2007 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 1 Choice-compulsory study plan
2005/2006 (N2646) Information Technology (1103T021) Computational Mathematics P Czech Ostrava 2 Compulsory study plan
2005/2006 (N2646) Information Technology (1103T021) Computational Mathematics K Czech Ostrava 2 Compulsory study plan
2004/2005 (N2646) Information Technology (1103T021) Computational Mathematics P Czech Ostrava 2 Compulsory study plan
2004/2005 (N2646) Information Technology (1103T021) Computational Mathematics K Czech Ostrava 2 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2009/2010 Summer