460-4087/01 – Nekonvenční algoritmy a výpočty (NAVY)

Garantující katedraKatedra informatikyKredity4
Garant předmětuprof. Ing. Ivan Zelinka, Ph.D.Garant verze předmětuprof. Ing. Ivan Zelinka, Ph.D.
Úroveň studiapregraduální nebo graduálníPovinnostpovinně volitelný
Odkaz na webhttp://www.ivanzelinka.eu/hp/Vyuka.htmlJazyk výukyčeština
Rok zavedení2015/2016Rok zrušení
Určeno pro fakultyFEIUrčeno pro typy studianavazující magisterské
Výuku zajišťuje
Os. čís.JménoCvičícíPřednášející
SKA206 Ing. Lenka Skanderová, Ph.D.
TOM0092 Ing. Lukáš Tomaszek
ZEL01 prof. Ing. Ivan Zelinka, Ph.D.
Rozsah výuky pro formy studia
Forma studiaZp.zak.Rozsah
prezenční Zápočet a zkouška 2+2
kombinovaná Zápočet a zkouška 10+0

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Cílem předmětu je seznámení jeho posluchačů s nekonvenčními algoritmy z fyzikálních a biologických procesů komplexních systémů. Absolvent získá přehled o moderních výpočetních postupech založených na principech, odpozorovaných z komplexních dějů a dynamik. Po úspěšném absolvování kurzu bude absolvent schopen aplikovat metody probírané v kurzu na reálné problémy.

Vyučovací metody

Přednášky
Cvičení (v učebně)

Anotace

Cílem předmětu je seznámení jeho posluchačů s problematikou nekonvenčních algoritmů, jejich biologicko - fyzikálním původem. V kurzu se budou probírat jednotlivé oblasti jejich původu, obvykle z přírodních komplexních systémů s důrazem jejich matematicko-fyzikálně-algoritmický popis a následné realizace na PC. Předmět dodá posluchačům mezioborový pohled na problematiku nekonvenčních algoritmů, komplexních systémů a jejich dynamického chování. Absolvent získá přehled o moderních výpočetních postupech, umožňujících modelovat a simulovat jinak velmi složité a komplexní systémy (deterministický chaos, Thomova teorie katastrof, fraktální geometrie, hejnová inteligence, algoritmy kvantové mechaniky, buněčné automaty, ”physarium machines”, “self-organized criticality”,...). Po úspěšném absolvování kurzu bude mít absolvent interdisciplinární přehledové znalosti z oblasti nekonvenčních algoritmů a bude schopen aplikovat metody probírané v kurzu na reálné problémy. Absolvent kurzu by měl být schopen dalšího hlubšího samostudia v této problematice.

Povinná literatura:

1. Zelinka I., Oplatková Z., Šeda M., Ošmera P., Včelař F., Evoluční výpočetní techniky, principy a aplikace, BEN, 2008, Praha 2. Zelinka I., Včelař F., Čandík M., Fraktální geometrie – principy a aplikace, BEN, 2006, 160 p., ISBN 80-7300-191-8 3. Horák J., Krlín L.1996, Deterministický chaos, Academia, ISBN 80-200-0416-5, 1996 4. Kolář I.1988, Úvod do Thomovy teorie katastrof, Academia, ISBN 21-056-88, 1988 5. Arnold V.I.1986, Teória katastróf, Alfa, ISBN 63-204-86, 1986 6. Back T., Fogel D. B. & Michalewicz Z., Handbook of Evolutionary Computation, (Institute of Physics, London), 1997

Doporučená literatura:

Zelinka I., Oplatková Z., Šeda M., Ošmera P., Včelař F., Evoluční výpočetní techniky, principy a aplikace, BEN, 2008, Praha Bekenstein J. D., Informace v holografickém vesmíru, Scientific American, česká edice, 03/2006 Mařík V. Štěpánková O., Lažanský J., Umělá inteligence IV, Academia, Praha, ISBN 80-200-1044-0, 2004 Mařík V. Štěpánková O., Lažanský J., Umělá inteligence III, Academia, Praha, ISBN 80-200-0472-6, 2001 Krempaský J. 1994, Synergetika, Vydavatelství STU Bratislava, ISBN 80-227-0707-4, 1994

Způsob průběžné kontroly znalostí během semestru

Kontrola je založena na vypracovávání protokolů předmětu, pomocí kterých student prokazuje nejen pochopení informací z přednášek, ale i schopnost jejich implementace v daném programovém prostředí. K získání zápočtu je nutno odevzdat cvičícímu všechny požadované protokoly a mít alespoň 80% fyzické účasti na laboratořích. Zápočet je podmínkou NUTNOU k připuštění ke zkoušce. Zkouška je ústní.

E-learning

Další požadavky na studenta

Je požadována schopnost tvořit programy v některém z používaných programovacích jazyků a aplikovat získané znalosti do tvorby algoritmů. Další požadavky na studenta nejsou kladeny.

Minimální znalostní požadavky

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.

Osnova předmětu

Přednášky: 1. Komplexita. Současný stav chápání problematiky komplexních systémů a jejich klasifikace. Synergetika. Demonstračně-motivační příklady a videa demonstrující výskyt chování komplexních systémů v každodenním reálném životě. 2. Algoritmy fraktální geometrie a vizualizace komplexních struktur. Historie, definice fraktálu, základní typy algoritmů generujících fraktály. Fraktální dimenze, interpolace a komprese. Algoritmy vývojových systémů a umělý život. L-systémy, želví grafika, parametrické L-systémy, algoritmizace L-systémů z pohledu fraktální geometrie. Grafický design, umění a fraktální geometrie. 3. Algoritmy deterministického chaosu. Historický nástin a klasifikace dynamických systémů, generujících chaos. Jednoduché modely a ukázkové příklady. Determinismus a hrana chaosu (podle Kaufmanna).Typické chaotické systémy: Lorenzův model počasí a podivný atraktor, elektronický systém a problém tří těles (model dvojhvězda a planeta). Divergence blízkých trajektorií. Determinismus a nepředpověditelnost. 4. Invarianty chaotického chování. Feigenbaumovy konstanty, soběpodobnost, U-sekvence, počítače a chaos. Diskrétní dynamické systémy. Základní jednoduché modely, Poincarého řezy, bifurkace, bifurkační diagram jako celostní pohled na chování systému, algoritmy a příklady. 5. Od řádu k chaosu: cesty vedoucí k chaotickému chování. Zdvojení periody, kvaziperiodičnost, střídavost a krize. Bifurkace a Thomovy katastrofy. Algoritmizace chaotického chování a metody rekonstrukce. Využití v kryptografických technikách, řízení chaosu a jeho výskyt v ekonomických systémech 6. Thomova teorie katastrof a spojitost s chaotickým chováním. Úvod do problematiky, základní modely a hierarchie katastrof. Jejich výskyt v dynamice systémů a algoritmy identifikace podle příznaků v naměřených datech. Příklady výskytu: ekonomické systémy, fyzikální systémy, mechanické systémy. 7. Algoritmy a komplexní systémy. Komplexní systémy generující efekt “self-organized criticality” (samo-organizované kritično - SOC), jejich modelování (modely typu hromada pisku,...) a výskyt v reálných komplexních systémech (evoluce, zemětřesení, laviny). 8. Buněčné automaty (BA) a komplexní systémy. Formalismus BA, dynamika a klasifikace buněčných automatů podle Wolframa, Conwayova hra života, modelování pomocí BA. Buněčné automaty a časoprostorový chaos. BA a generování hudby. BA a řešní složitých problémů. Složité algoritmické chování BA na základě jednoduchých pravidel. 9. Algoritmy a komplexní sítě. Úvod do problematiky komplexních sítí, metody vizualizace a algoritmizace jejich dynamiky. Příklady výskytu komplexních sítí (sociální sítě, dynamika evolučních procesů,...). Vizualizace dynamiky komplexních sítí pomocí modelů chaotických systémů. Vizualizace dynamiky evolučních technik pomocí komplexních sítí. 10. Biologické systémy a jejich matematické modely. Dynamické systémy a Lotka-Volterrovy rovnice pro dva koexistující druhy, Lotka-Volterrovy rovnice pro více jak dva koexistující druhy. Ekologické rovnice zachycující interakci mezi více druhy. Nashova rovnováha. Evolučně stabilní strategie (evoluční stabilita, populační teorie her), replikační, adaptivní dynamiky, replikační sítě. Stabilita N koexistujících společenství. 11. Hejnová inteligence. Hejnové algoritmy, dynamika hejna, příklady hejnových algoritmů, hejnová robotika, řešení složitých problémů. 12. Physarum jako mechanizmus výpočtu. Základní principy a struktura physaria. Od reakce-difúzních (automatů) k výpočetním operacím Physaria. Řízení dynamiky physaria. Experimentování s Physariem. 13. Membránové výpočty a syntetická biologie. Základní principy, definice a příklady. Infobiotika jako informace v biotických systémech. 14. Sumarizace kurzu. Vzájemné souvislosti mezi jednotlivými typy algoritmů, jejich dynamikou a chováním složitých systémů. Cvičení (na PC učebnách): V cvičeních bude kladen důraz na praktickou aplikaci probíraných technik a řešení vybraných vzorových problémů. - tvorba základního jednotného frameworku pro nekonvenční algoritmy na principech GUI, 1 týden - tvorba modulu pro fraktální geometrii, 2 týdny - tvorba modulu pro deterministický chaos, 2 týdny - tvorba modulu pro buněčné automaty, 2 týdny - tvorba modulů pro simulaci základních biologických systémů, 2 týdny - tvorba modulů pro hejnovou inteligenci, 2 týdny - tvorba modulu simulující physarium, 2 týdny

Podmínky absolvování předmětu

Prezenční forma (platnost od: 2015/2016 zimní semestr)
Název úlohyTyp úlohyMax. počet bodů
(akt. za podúlohy)
Min. počet bodů
Zápočet a zkouška Zápočet a zkouška 100 (100) 51
        Zápočet Zápočet 45  20
        Zkouška Zkouška 55  6
Rozsah povinné účasti:

Zobrazit historii

Výskyt ve studijních plánech

Akademický rokProgramOborSpec.FormaJazyk výuky Konz. stř.RočníkZLTyp povinnosti
2018/2019 (N2647) Informační a komunikační technologie (1801T064) Informační a komunikační bezpečnost P čeština Ostrava 1 volitelný odborný stu. plán
2018/2019 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika P čeština Ostrava povinně volitelný stu. plán
2018/2019 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika K čeština Ostrava povinně volitelný stu. plán
2017/2018 (N2647) Informační a komunikační technologie (1801T064) Informační a komunikační bezpečnost P čeština Ostrava 1 volitelný odborný stu. plán
2017/2018 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika P čeština Ostrava povinně volitelný stu. plán
2017/2018 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika K čeština Ostrava povinně volitelný stu. plán
2016/2017 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika P čeština Ostrava povinně volitelný stu. plán
2016/2017 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika K čeština Ostrava povinně volitelný stu. plán
2016/2017 (N2647) Informační a komunikační technologie (1801T064) Informační a komunikační bezpečnost P čeština Ostrava 1 volitelný odborný stu. plán
2015/2016 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika P čeština Ostrava povinně volitelný stu. plán
2015/2016 (N2647) Informační a komunikační technologie (2612T025) Informatika a výpočetní technika K čeština Ostrava povinně volitelný stu. plán

Výskyt ve speciálních blocích

Název blokuAkademický rokForma studiaJazyk výuky RočníkZLTyp blokuVlastník bloku