470-2111/01 – Mathematical Analysis 2 (MA2)

Gurantor departmentDepartment of Applied MathematicsCredits4
Subject guarantordoc. Mgr. Petr Vodstrčil, Ph.D.Subject version guarantordoc. Mgr. Petr Vodstrčil, Ph.D.
Study levelundergraduate or graduateRequirementCompulsory
Year1Semestersummer
Study languageCzech
Year of introduction2015/2016Year of cancellation2021/2022
Intended for the facultiesFEIIntended for study typesBachelor
Instruction secured by
LoginNameTuitorTeacher giving lectures
BOU10 prof. RNDr. Jiří Bouchala, Ph.D.
VOD03 doc. Mgr. Petr Vodstrčil, Ph.D.
S1A64 RNDr. Petra Vondráková, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 10+10

Subject aims expressed by acquired skills and competences

Students will learn about differential calculus of more-variable real functions. In the second part students will get the basic practical skills for working with fundamental concepts, methods and applications of integral calculus of more-variable real functions.

Teaching methods

Lectures
Tutorials

Summary

This subject contains following topics: ----------------------------------- differential calculus of two and more-variable real functions, integral calculus of more-variable real functions or differential equations (according to the version)

Compulsory literature:

BOUCHALA, Jiří; KRAJC, Bohumil. Introduction to Differential Calculus of Several Variables, 2022 http://am.vsb.cz/bouchala BOUCHALA, Jiří; VODSTRČIL, Petr; ULČÁK, David. Integral Calculus of Multivariate Functions, 2022 http://am.vsb.cz/bouchala

Recommended literature:

ANTON, Howard; BIVENS, Irl a DAVIS, Stephen. Calculus. 8th ed. Hoboken: Wiley, c2005. ISBN 0-471-48273-0.

Additional study materials

Way of continuous check of knowledge in the course of semester

During the semester we will write two tests.

E-learning

Other requirements

There are not defined other requirements for student.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures: - More-variable real functions. Partial and directional derivatives, differential and gradient. - Taylor's theorem. - Extremes of more-variable real functions. - Definition of double integral, basic properties. Fubini theorems for double integral. - Transformation of double integral, aplications of double integral. - Definition of triple integral, basic properties. Fubini theorems for triple integral. - Transformation of triple integral, aplications of triple integral. Exercises: - More-variable real functions. Partial and directional derivatives, differential and gradient. - Taylor's theorem. - Extremes of more-variable real functions. - Definition of double integral, basic properties. Fubini theorems for double integral. - Transformation of double integral, aplications of double integral. - Definition of triple integral, basic properties. Fubini theorems for triple integral. - Transformation of triple integral, aplications of triple integral.

Conditions for subject completion

Full-time form (validity from: 2015/2016 Winter semester, validity until: 2021/2022 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Credit and Examination Credit and Examination 100 (100) 51
        Credit Credit 30 (30) 10
                1. zápočtový test Written test 15  0
                2. zápočtový test Written test 15  0
        Examination Examination 70  21 3
Mandatory attendence participation: participation at all exercises is obligatory, 2 apologies are accepted participation at all lectures is expected

Show history

Conditions for subject completion and attendance at the exercises within ISP: Completion of all mandatory tasks within individually agreed deadlines.

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2020/2021 (B2647) Information and Communication Technology P Czech Ostrava 1 Compulsory study plan
2020/2021 (B2647) Information and Communication Technology K Czech Ostrava 1 Compulsory study plan
2019/2020 (B2647) Information and Communication Technology P Czech Ostrava 1 Compulsory study plan
2019/2020 (B2647) Information and Communication Technology K Czech Ostrava 1 Compulsory study plan
2018/2019 (B2647) Information and Communication Technology P Czech Ostrava 1 Compulsory study plan
2018/2019 (B2647) Information and Communication Technology K Czech Ostrava 1 Compulsory study plan
2017/2018 (B2647) Information and Communication Technology P Czech Ostrava 1 Compulsory study plan
2017/2018 (B2647) Information and Communication Technology K Czech Ostrava 1 Compulsory study plan
2016/2017 (B2647) Information and Communication Technology P Czech Ostrava 1 Compulsory study plan
2016/2017 (B2647) Information and Communication Technology K Czech Ostrava 1 Compulsory study plan
2015/2016 (B2647) Information and Communication Technology P Czech Ostrava 1 Compulsory study plan
2015/2016 (B2647) Information and Communication Technology K Czech Ostrava 1 Compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2019/2020 Summer
2018/2019 Summer
2017/2018 Summer
2016/2017 Summer
2015/2016 Summer