Gurantor department | Department of Applied Mathematics | Credits | 6 |

Subject guarantor | Mgr. Bohumil Krajc, Ph.D. | Subject version guarantor | Mgr. Bohumil Krajc, Ph.D. |

Study level | undergraduate or graduate | Requirement | Choice-compulsory |

Year | 1 | Semester | winter |

Study language | Czech | ||

Year of introduction | 2010/2011 | Year of cancellation | |

Intended for the faculties | FEI | Intended for study types | Follow-up Master |

Instruction secured by | |||
---|---|---|---|

Login | Name | Tuitor | Teacher giving lectures |

KAL0063 | prof. RNDr. René Kalus, Ph.D. | ||

KRA04 | Mgr. Bohumil Krajc, Ph.D. |

Extent of instruction for forms of study | ||
---|---|---|

Form of study | Way of compl. | Extent |

Full-time | Credit and Examination | 2+2 |

Part-time | Credit and Examination | 10+10 |

The main aim of the subject is to formulate classical partial differential equations motivated by physical phenomena and to use classical methods for their solutions.

Lectures

Individual consultations

Tutorials

This course is devoted to the analytical methods of the solution of the partial differentia equations. All the methods will give us fruitful imagination of the qualitative behavior of the mathematical modeling. This information will be very useful tor the future modeling of more complicated problems. During this course there will be given standard set of the classical partial differential equations and their properties. Also stability and uniqueness will be discussed.

W. A. Strauss: Partial Differential Equations (An Introduction), John Wiley & Sons, Inc., New York 1992.

Textbook for students of the PDE.

Study control:
Assigned home tasks.
Conditions for the credit:
At least 20 points gained.

There are not defined other requirements for student.

Subject has no prerequisities.

Subject has no co-requisities.

First order equations, Cauchy problem, characteristic equations.
Cauchy problem for equations of higher degrees.
Classification equations of the second order.
Formulation of the classical equations given by physical phenomenon (formulation boundary and initial conditions) like: heat eq., diffusion eq., wave eq., Laplace and Poisson eq., etc.
Solution by method of characteristic.
Solution by Fourier method.
Solution by integral transformations.
Solution by Green function.
Maximal principle and uniqueness of solution.
Solution by method of potentials.

Task name | Type of task | Max. number of points
(act. for subtasks) | Min. number of points | Max. počet pokusů |
---|---|---|---|---|

Exercises evaluation and Examination | Credit and Examination | 100 (100) | 51 | |

Exercises evaluation | Credit | 30 (30) | 10 | |

1. Písemka | Written test | 15 | 0 | |

2. Písemka | Written test | 15 | 0 | |

Examination | Examination | 70 | 35 | 3 |

Show history

Conditions for subject completion and attendance at the exercises within ISP: Completion of all mandatory tasks within individually agreed deadlines.

Show history

Academic year | Programme | Field of study | Spec. | Zaměření | Form | Study language | Tut. centre | Year | W | S | Type of duty | |
---|---|---|---|---|---|---|---|---|---|---|---|---|

2022/2023 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | K | Czech | Ostrava | 1 | Compulsory | study plan | |||

2022/2023 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | P | Czech | Ostrava | 1 | Compulsory | study plan | |||

2021/2022 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | P | Czech | Ostrava | 1 | Compulsory | study plan | |||

2021/2022 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | K | Czech | Ostrava | 1 | Compulsory | study plan | |||

2020/2021 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2020/2021 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2020/2021 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | K | Czech | Ostrava | 1 | Compulsory | study plan | |||

2020/2021 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | P | Czech | Ostrava | 1 | Compulsory | study plan | |||

2019/2020 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2019/2020 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2019/2020 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | P | Czech | Ostrava | 1 | Compulsory | study plan | |||

2019/2020 | (N0541A170007) Computational and Applied Mathematics | (S01) Applied Mathematics | MFA | K | Czech | Ostrava | 1 | Compulsory | study plan | |||

2018/2019 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2018/2019 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2017/2018 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2017/2018 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2016/2017 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2016/2017 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2015/2016 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2015/2016 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Compulsory | study plan | ||||

2014/2015 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2014/2015 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2013/2014 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2013/2014 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2012/2013 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2012/2013 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2011/2012 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2011/2012 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2010/2011 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | P | Czech | Ostrava | 1 | Choice-compulsory | study plan | ||||

2010/2011 | (N2647) Information and Communication Technology | (1103T031) Computational Mathematics | K | Czech | Ostrava | 1 | Choice-compulsory | study plan |

Block name | Academic year | Form of study | Study language | Year | W | S | Type of block | Block owner |
---|

2021/2022 Winter |

2019/2020 Winter |

2018/2019 Winter |

2017/2018 Winter |

2015/2016 Winter |

2014/2015 Winter |

2012/2013 Winter |