470-4115/01 – Nonlinear Functional Analysis (NEFN)

Gurantor departmentDepartment of Applied MathematicsCredits4
Subject guarantorprof. RNDr. Jiří Bouchala, Ph.D.Subject version guarantorprof. RNDr. Jiří Bouchala, Ph.D.
Study levelundergraduate or graduateRequirementOptional
Year2Semesterwinter
Study languageCzech
Year of introduction2010/2011Year of cancellation2020/2021
Intended for the facultiesFEIIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
BOU10 prof. RNDr. Jiří Bouchala, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 10+10

Subject aims expressed by acquired skills and competences

Successful student will gain basic knowledge of nonlinear functional analysis and its applications.

Teaching methods

Lectures
Tutorials

Summary

The subject contains basic concepts of nonlinear functional analysis (compact operators, implicit function theorem, topological degree, monotone operators).

Compulsory literature:

E. Zeidler: Applied Functional Analysis, Springer-Verlag, New York, 1995.

Recommended literature:

E. Zeidler: Applied Functional Analysis, Springer-Verlag, New York, 1995.

Additional study materials

Way of continuous check of knowledge in the course of semester

Podmínky udělení zápočtu: Aktivní účast na cvičeních. Vyřešení zadaných problémů.

E-learning

Other requirements

There are not defined other requirements for student.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Spectral Theory of Bounded Operators: Self - Adjoint Operators. Compact Operators. Fundamental Theorems of Nonlinear Functional Analysis: Baire Theorem. Open Mapping Theorem. Implicit Function Theorem. Bifurcation Theorem. Topological Methods: Brouwer Fixed Point Theorem. Topological Degree. Monotone Operators. Variational Methods: Ekeland Variational Principle. Mountain Pass Theorem. Saddle Point Theorem.

Conditions for subject completion

Part-time form (validity from: 2010/2011 Winter semester, validity until: 2020/2021 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 30  10
        Examination Examination 70  21 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2020/2021 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2020/2021 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2019/2020 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2019/2020 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2018/2019 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2018/2019 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2017/2018 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2017/2018 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2016/2017 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2016/2017 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2015/2016 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2015/2016 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2014/2015 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2014/2015 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2013/2014 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2013/2014 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2012/2013 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2012/2013 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2011/2012 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2011/2012 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2010/2011 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2010/2011 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2010/2011 Summer