470-4504/01 – Iterative Methods (IM)

Gurantor departmentDepartment of Applied MathematicsCredits4
Subject guarantorIng. Simona Bérešová, Ph.D.Subject version guarantorprof. RNDr. Radim Blaheta, CSc.
Study levelundergraduate or graduateRequirementOptional
YearSemesterwinter
Study languageCzech
Year of introduction2010/2011Year of cancellation2020/2021
Intended for the facultiesFEIIntended for study typesFollow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
DOM0015 Ing. Simona Bérešová, Ph.D.
BLA19 prof. RNDr. Radim Blaheta, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2
Part-time Credit and Examination 10+10

Subject aims expressed by acquired skills and competences

Students will be able to use various types of iterative methods for solving linear and nonlinear alebraic systems. He will become acquainted with basic ideas as well as some recent results in the field.

Teaching methods

Lectures
Tutorials

Summary

The course introduces various types of iterative methods for solving linear and nonlinear systems. The lectures focus on the basic ideas, however, it include some latest results in the field.

Compulsory literature:

C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia 1995, http://www.siam.org/catalog/mcc12/kelley.htm B. Barrett et al.: Templates for the solution of linear systems, SIAM, Philadelphia 1993, http://www.siam.org/catalog/mcc01/barrett.htm

Recommended literature:

O. Axelsson: Iterative Solution Methods, Cambridge University Press, 1994 Werner C. Rheinboldt: Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia 1998, http://www.siam.org/catalog/mcc02/cb70.htm

Additional study materials

Way of continuous check of knowledge in the course of semester

E-learning

Other requirements

There are not defined other requirements for student.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

Lectures: Systems of equations arising from mathematical modelling in engineering. Properties of systems arising from finite element methods. Classical iterative methods. Richardson, Jacobi, Gauss-Seidel iterative methods. Convergence studies. Multigrid methods. Method of conjugate gradients. Fundamentals. Implementation. Global properties and convergence rate estimates based on the condition number. Preconditioning. Preconditioned conjugate gradients method. Incomplete factorization. Solution to nonsymmetric systems. GMRES. Solution to nonlinear systems. Properties of nonlinear operators. Newton method. Local convergence. Inexact Newton method. Damping and global convergence. Implementation of iterative methods on parallel computers. Domain decomposition methods. Comparison of direct and iterative methods. Solution to large-scale systems. Tutorials: Systems of equations arising in mathematical modeling in engineering. Assembling the system matrix in the finite element method, properties. Solution to systems using Richardson, Jacobi, and Gauss-Seidel iterative methods. Multigrid method. Implementation of conjugate gradient method, rate of convergence. Implementation of various preconditioners in the conjugate gradients method. Incomplete factorization. Implementation of GMRES. Implementation of Newton method and inexact Newton method. Implementation of iterative methods on parallel computers. Domain decomposition methods. Comparison of direct and iterative methods. Solution to large-scale systems.

Conditions for subject completion

Part-time form (validity from: 2012/2013 Winter semester, validity until: 2020/2021 Summer semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of pointsMax. počet pokusů
Exercises evaluation and Examination Credit and Examination 100 (100) 51
        Exercises evaluation Credit 30  15
        Examination Examination 70  21 3
Mandatory attendence participation:

Show history

Conditions for subject completion and attendance at the exercises within ISP:

Show history

Occurrence in study plans

Academic yearProgrammeBranch/spec.Spec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2020/2021 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2020/2021 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2019/2020 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2019/2020 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2018/2019 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2018/2019 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2017/2018 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2017/2018 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2016/2017 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2016/2017 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2015/2016 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2015/2016 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2014/2015 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2014/2015 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2013/2014 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2013/2014 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2012/2013 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava Optional study plan
2012/2013 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava Optional study plan
2011/2012 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2011/2012 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan
2010/2011 (N2647) Information and Communication Technology (1103T031) Computational Mathematics P Czech Ostrava 2 Optional study plan
2010/2011 (N2647) Information and Communication Technology (1103T031) Computational Mathematics K Czech Ostrava 2 Optional study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner

Assessment of instruction



2017/2018 Winter