480-6005/01 – Aplikace fotonických struktur (AFS)

Garantující katedraKatedra fyzikyKredity10
Garant předmětudoc. RNDr. Dalibor Ciprian, Ph.D.Garant verze předmětudoc. RNDr. Dalibor Ciprian, Ph.D.
Úroveň studiapostgraduálníPovinnostpovinně volitelný
RočníkSemestrzimní + letní
Jazyk výukyčeština
Rok zavedení2018/2019Rok zrušení
Určeno pro fakultyFEI, USP, HGFUrčeno pro typy studiadoktorské
Výuku zajišťuje
Os. čís.JménoCvičícíPřednášející
CIP10 doc. RNDr. Dalibor Ciprian, Ph.D.
Rozsah výuky pro formy studia
Forma studiaZp.zak.Rozsah
prezenční Zkouška 28+0
kombinovaná Zkouška 28+0

Cíle předmětu vyjádřené dosaženými dovednostmi a kompetencemi

Předmět je zaměřen na systematické seznámení studentů s fyzikálním přístupem k popisu a s výpočetními metodami návrhu pokročilých typů fotonických struktur jakou jsou fotonické krystaly, metamateriály, fotonická krystalová vlákna, mikrorezonátory, atd. Nedílnou součástí je též seznámení s různými praktickými aplikacemi těchto struktur v oblasti vlnovodné techniky, optických komunikací, jejich využití jako senzorů různých fyzikálních a chemických veličin, použití v oblasti konstrukce nových speciálních světelných zdrojů (superkontinuum), a ve fotovoltaice. V rámci předmětu by měli studenti též získat praktické zkušenosti s implementacemi výpočetních metod užívaných při návrhu fotonických struktur různých typů.

Vyučovací metody

Přednášky
Individuální konzultace

Anotace

Předmět je zaměřen na systematické seznámení studentů s fyzikálním přístupem k popisu a s výpočetními metodami návrhu pokročilých typů fotonických struktur jakou jsou fotonické krystaly, metamateriály, fotonická krystalová vlákna, mikrorezonátory, atd. Nedílnou součástí je též seznámení s různými praktickými aplikacemi těchto struktur v oblasti vlnovodné techniky, optických komunikací, jejich využití jako senzorů různých fyzikálních a chemických veličin, použití v oblasti konstrukce nových speciálních světelných zdrojů (superkontinuum), a ve fotovoltaice. V rámci předmětu by měli studenti též získat praktické zkušenosti s implementacemi výpočetních metod užívaných při návrhu fotonických struktur různých typů.

Povinná literatura:

Povinná literatura v českém jazyce není k dispozici 1) Sakoda, K.: Optical Properties of Photonic Crystals, 2nd edition, 2004, Springer, ISBN-13: 978-3540206828 2) Zolla, F., Renversez, G., Nicolet, A.: Foundations of Photonic Crystal Fibres, 2nd revised edition, 2012, Imperial College Press, ISBN-13: 978-1848167285 3) Homola, J.: Surface Plasmon Resonance Based Sensors, 2010, Springer, ISBN-13: 978-3642070464 4) Udd, E. Spillman, W. B.: Design and Application of Fiber Optic Sensors, 2012, John Wiley & Sons, ISBN-13: 978-0470126844

Doporučená literatura:

Literatura v českém jazyce není k dispozici 1) Thevenaz, L.: Advanced Fiber Optics, 2011, EFPL Press, ISBN-13: 978-1439835173 2) Maier, S. A.: Plasmonics: Fundamentals and Applications, 2010, Springer, ISBN-13: 978-1441941138

Forma způsobu ověření studijních výsledků a další požadavky na studenta

Diskuse se studenty během semstru.

E-learning

e-learning není k dispozici

Další požadavky na studenta

Předpokládá se samostatná a systematická práce studenta doktorského studia.

Prerekvizity

Předmět nemá žádné prerekvizity.

Korekvizity

Předmět nemá žádné korekvizity.

Osnova předmětu

1. Elektromagnetická teorie periodických prostředí. 2. Výpočetní metody užívané pro popis šíření elmag. vln ve fotonických strukturách (FEM, FMM, FDTD, BPM), jejich praktická implementace. 3. Základní typy fotonických vlnovodů a rezonátorů, jejich vlastnosti a metody charakterizace. 4. Aplikace fotonických struktur v integrované optice a optických komunikacích. 5. Aplikace fotonických struktur ve fotovoltaice. 6. Fotonické struktury s povrchovými vlnami. 7. Použití fotonických struktur jako senzorů fyzikálních a chemických veličin.

Podmínky absolvování předmětu

Prezenční forma (platnost od: 2018/2019 zimní semestr)
Název úlohyTyp úlohyMax. počet bodů
(akt. za podúlohy)
Min. počet bodů
Zkouška Zkouška  
Rozsah povinné účasti:

Zobrazit historii

Výskyt ve studijních plánech

Akademický rokProgramObor/spec.Spec.ZaměřeníFormaJazyk výuky Konz. stř.RočníkZLTyp povinnosti
2021/2022 (P0533D110005) Aplikovaná fyzika K čeština Ostrava povinně volitelný typu B stu. plán
2021/2022 (P0533D110005) Aplikovaná fyzika P čeština Ostrava povinně volitelný typu B stu. plán
2020/2021 (P0533D110005) Aplikovaná fyzika P čeština Ostrava povinně volitelný typu B stu. plán
2020/2021 (P0533D110005) Aplikovaná fyzika K čeština Ostrava povinně volitelný typu B stu. plán
2020/2021 (P1701) Fyzika (1702V001) Aplikovaná fyzika P čeština Ostrava povinně volitelný stu. plán
2020/2021 (P1701) Fyzika (1702V001) Aplikovaná fyzika K čeština Ostrava povinně volitelný stu. plán
2019/2020 (P0533D110005) Aplikovaná fyzika P čeština Ostrava povinně volitelný typu B stu. plán
2019/2020 (P0533D110005) Aplikovaná fyzika K čeština Ostrava povinně volitelný typu B stu. plán
2019/2020 (P1701) Fyzika (1702V001) Aplikovaná fyzika P čeština Ostrava povinně volitelný stu. plán
2019/2020 (P1701) Fyzika (1702V001) Aplikovaná fyzika K čeština Ostrava povinně volitelný stu. plán
2018/2019 (P1701) Fyzika (1702V001) Aplikovaná fyzika P čeština Ostrava povinně volitelný stu. plán
2018/2019 (P1701) Fyzika (1702V001) Aplikovaná fyzika K čeština Ostrava povinně volitelný stu. plán

Výskyt ve speciálních blocích

Název blokuAkademický rokForma studiaJazyk výuky RočníkZLTyp blokuVlastník bloku