480-8688/01 – Quantum Physics II (KFII)

Gurantor departmentDepartment of PhysicsCredits3
Subject guarantorDoc. Dr. RNDr. Petr AlexaSubject version guarantorDoc. Dr. RNDr. Petr Alexa
Study levelundergraduate or graduateRequirementChoice-compulsory
Year1Semesterwinter
Study languageCzech
Year of introduction2018/2019Year of cancellation
Intended for the facultiesUSPIntended for study typesMaster, Follow-up Master
Instruction secured by
LoginNameTuitorTeacher giving lectures
ALE02 Doc. Dr. RNDr. Petr Alexa
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Examination 2+1

Subject aims expressed by acquired skills and competences

The subject follows the previously taught subject 'Introduction to quantum physics and chemistry'. Its goal is to introduce more advance chapters of quantum mechanics such as matrix representation of quantum mechanics, additivity of angular momenta, perturbation theory, probability of transition in two-level system (e.g. photon absorption) or second quantization and application of quantum mechanics, such as quantum cryptography and quantum teleportation.

Teaching methods

Lectures
Tutorials

Summary

- matrix representation of quantum mechanics - spin, magnetic moment, ladder operators, summing up of angular moments, Clebch-Gordan coefficients - perturbation theory (spin-orbit interaction), time-dependent perturbation, Fermi golden rule - interaction of two-level system with electromagnetic field. - second quantization - two- and more-electrons' wave function, Slater determinant - quantum entanglement, Bell inequilities, EPR paradox, quantum quantum crypthograhy, quantum teleportation - limits of Schrodinger equation, Dirac equation

Compulsory literature:

1. C.C. Tannoudji, B. Diu, F. Laloe, Quantum mechanics, Hermann (1998) 2. R. Shankar, Principles of Quantum Mechanics, Springer (1994) 3. E. Merzbacher, Quantum mechanics, John Wiley & Sons (2001)

Recommended literature:

1. J.J. Sakurai, J.J. Napolitano: Modern Quantum Mechanics (Addison-Wesley, 2011) 2. R.P. Feynman, R.B. Leighton, M. Sands, Feynmanovy přednášky z fyziky 3, Fragment (2002) 3. J. Klíma, B. Velický,  Kvantová teorie, Charles University Press (1989) 4. Skála, Lubomír, Úvod do kvantové mechaniky, Karolinum, (2012)

Way of continuous check of knowledge in the course of semester

Solved problems to get the credit and exam.

E-learning

Other requirements

The subject follows the previously taught subject 'Introduction to quantum physics and chemistry'. Its goal is to introduce more advance chapters of quantum mechanics such as matrix representation of quantum mechanics, additivity of angular momenta, perturbation theory, probability of transition in two-level system (e.g. photon absorption) or second quantization and application of quantum mechanics, such as quantum cryptography and quantum teleportation.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

- matrix representation of quantum mechanics - spin, magnetic moment, ladder operators, summing up of angular moments, Clebch-Gordan coefficients - perturbation theory (spin-orbit interaction), time-dependent perturbation, Fermi golden rule - interaction of two-level system with electromagnetic field - second quantization - two- and more-electrons' wave function, Slater determinant - quantum entanglement, Bell inequilities, EPR paradox, quantum quantum crypthograhy, quantum teleportation - limits of Schrodinger equation, Dirac equation

Conditions for subject completion

Full-time form (validity from: 2018/2019 Winter semester)
Task nameType of taskMax. number of points
(act. for subtasks)
Min. number of points
Examination Examination 100  51
Mandatory attendence parzicipation:

Show history

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2019/2020 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Choice-compulsory study plan
2018/2019 (N3942) Nanotechnology (3942T001) Nanotechnology P Czech Ostrava 1 Choice-compulsory study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner