516-0055/01 – Computer Processing of Experimental Data (PZED)
Gurantor department | Institute of Physics | Credits | 3 |
Subject guarantor | doc. Dr. Ing. Michal Lesňák | Subject version guarantor | doc. Dr. Ing. Michal Lesňák |
Study level | undergraduate or graduate | Requirement | Compulsory |
Year | 2 | Semester | winter |
| | Study language | Czech |
Year of introduction | 2007/2008 | Year of cancellation | 2015/2016 |
Intended for the faculties | USP | Intended for study types | Bachelor |
Subject aims expressed by acquired skills and competences
Repeat the basic knowledge from secondary school information technology and their expansion
Define and characterize the basic principles information technology with sight on processing experimental data
Solve the simple exercises processing experimental data
Teaching methods
Seminars
Summary
Předmět Počítačové zpracování experimentálních dat rozšiřuje znalosti studentů
při zpracování naměřených dat pomoci počítače. Je zaměřen na matematický a
statistický software a studenti se zde seznámí s úvodem do statistiky.
Compulsory literature:
Mathworks Inc.: MATLAB R13 HELP, Mathworks Inc., 2002.
Recommended literature:
Mathworks Inc.: MATLAB R13 HELP, Mathworks Inc., 2002.
Way of continuous check of knowledge in the course of semester
E-learning
Other requirements
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
Content focus:
- Introductory lecture. Repeat the basic concepts: uncertainty, variables, functions.
- Statistical analysis of univariate data. Point estimates of parameters of location,
dispersion and shape.
- Introduction to Matlab - user environment command window, basic
commands and functions.
- Basic operation of Matlab, typing, using the toolbox,
statistical toolbox.
- Graphic Data Processing Matlab help.
- Presentation of data in Matlab, data from other applications and other
applications.
- Simple linear regression, regression models, nonlinear regression.
- Use of Fourier transform, properties of Fourier transform, fast
Fourier transformation (FFT).
- The ideal, natural and immediate sampling, Shannon - Kotělnikův theorem.
- Introduction to using the program Statigraf.
- Individual work, implementation of simple measurements and their processing.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction