# 516-0055/01 – Computer Processing of Experimental Data (PZED)

 Gurantor department Institute of Physics Credits 3 Subject guarantor doc. Dr. Ing. Michal Lesňák Subject version guarantor doc. Dr. Ing. Michal Lesňák Study level undergraduate or graduate Requirement Compulsory Year 2 Semester winter Study language Czech Year of introduction 2007/2008 Year of cancellation 2015/2016 Intended for the faculties USP Intended for study types Bachelor
Instruction secured by
LES66 doc. Dr. Ing. Michal Lesňák
Extent of instruction for forms of study
Form of studyWay of compl.Extent

### Subject aims expressed by acquired skills and competences

Repeat the basic knowledge from secondary school information technology and their expansion Define and characterize the basic principles information technology with sight on processing experimental data Solve the simple exercises processing experimental data

Seminars

### Summary

Předmět Počítačové zpracování experimentálních dat rozšiřuje znalosti studentů při zpracování naměřených dat pomoci počítače. Je zaměřen na matematický a statistický software a studenti se zde seznámí s úvodem do statistiky.

### Compulsory literature:

Mathworks Inc.: MATLAB R13 HELP, Mathworks Inc., 2002.

### Recommended literature:

Mathworks Inc.: MATLAB R13 HELP, Mathworks Inc., 2002.

### E-learning

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

### Prerequisities

Subject has no prerequisities.

### Co-requisities

Subject has no co-requisities.

### Subject syllabus:

Content focus: - Introductory lecture. Repeat the basic concepts: uncertainty, variables, functions. - Statistical analysis of univariate data. Point estimates of parameters of location, dispersion and shape. - Introduction to Matlab - user environment command window, basic commands and functions. - Basic operation of Matlab, typing, using the toolbox, statistical toolbox. - Graphic Data Processing Matlab help. - Presentation of data in Matlab, data from other applications and other applications. - Simple linear regression, regression models, nonlinear regression. - Use of Fourier transform, properties of Fourier transform, fast Fourier transformation (FFT). - The ideal, natural and immediate sampling, Shannon - Kotělnikův theorem. - Introduction to using the program Statigraf. - Individual work, implementation of simple measurements and their processing.

### Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

### Occurrence in study plans

Academic yearProgrammeField of studySpec.FormStudy language Tut. centreYearWSType of duty
2015/2016 (B3942) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2015/2016 (B3942) Nanotechnology (3942R001) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2014/2015 (B3942) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2013/2014 (B3942) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2012/2013 (B3942) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2012/2013 (B3942) Nanotechnology (3942R001) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2011/2012 (B3942) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2010/2011 (B3942) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2009/2010 (B3942) Nanotechnology P Czech Ostrava 2 Compulsory study plan
2008/2009 (B3942) Nanotechnology (3942R001) Nanotechnology P Czech Ostrava 2 Compulsory study plan

### Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner