# 516-0060/01 – Thermodynamics and Statistical Physics (TSF)

 Gurantor department Institute of Physics Credits 6 Subject guarantor doc. RNDr. Dalibor Ciprian, Ph.D. Subject version guarantor doc. RNDr. Dalibor Ciprian, Ph.D. Study level undergraduate or graduate Requirement Compulsory Year 3 Semester summer Study language Czech Year of introduction 2007/2008 Year of cancellation 2015/2016 Intended for the faculties USP Intended for study types Bachelor
Instruction secured by
CIP10 doc. RNDr. Dalibor Ciprian, Ph.D.
PIS50 prof. Ing. Jaromír Pištora, CSc.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Credit and Examination 2+2

### Subject aims expressed by acquired skills and competences

Collect the basic principles of thermodynamics and statistical physics Define the physical quantities for describing statistical ensembles with great numer of particles Apply the simple mathematical methods for describing of the thermodynamic phenomene Interpret the knowlidges from the mathematical statistics for solving of statistical physical problems

Lectures
Seminars
Tutorials

### Summary

The course is oriented on classical thrmodynamics and statistical physics.

### Compulsory literature:

SONNTAG, R. E., BORGNAKKE, C., VAN WYLEN, G. J. Fundamentals of Thermodynamics. John Wiley&Sons, USA, 2003. ISBN 0-471-15232-3;

### Recommended literature:

BEISER, A.: Concepts of Modern Physics, McGraw-Hill 2002

### E-learning

systematic off-class study required

### Prerequisities

Subject has no prerequisities.

### Co-requisities

Subject has no co-requisities.

### Subject syllabus:

1. Basic concepts of thermodynamics, the state of thermodynamic equilibrium, the first and second postulate of thermodynamics. Reversible and irreversible processes, the criterion of reversibility of the process. 2. The first law of thermodynamics, heat capacity. The second law of thermodynamics. Entropy, entropy associated with the heat capacities of the system. 3. Thermodynamic potentials: internal energy, free energy, enthalpy, Gibbs potential. Gibbs - Helmholtz equation. Dependence of thermodynamic potentials of the number of particles in the system. Grandkanonical potential. The second law of thermodynamics for irreversible processes. Conditions of equilibrium thermodynamic system expressed by potentials. 4. Concepts of probability theory and mathematical statistics in statistical physics. Basic concepts and ideas of statistical physics. Microstates, macrostates, ensemble of systems. Ergodic hypothesis. Time evolution of probability density. 5. The mikrocanonical ensemble. Entropy and thermodynamic probability. 6. The canonical (Gibbs) ensemble. The partition function, partition sum (integral). Relationships between partition functions and thermodynamic quantities. Maxwell – Boltzmann´s distribution of velocities of gas molecules. Classical and quantum harmonic oscillator. 7. Large canonical (grandcanonical) ensemble. Grandcanonical partition function. The transition to quantum statistics. Fermi – Dirac´s distribution. Bose - Einsteinś distribution. Thermodynamic properties of photons file. Thermodynamic properties of a file of free electrons in the metal.

### Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

### Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2015/2016 (B3942) Nanotechnology (3942R001) Nanotechnology P Czech Ostrava 3 Compulsory study plan
2014/2015 (B3942) Nanotechnology P Czech Ostrava 3 Compulsory study plan
2014/2015 (B3942) Nanotechnology (3942R001) Nanotechnology P Czech Ostrava 3 Compulsory study plan
2013/2014 (B3942) Nanotechnology (3942R001) Nanotechnology P Czech Ostrava 3 Compulsory study plan
2012/2013 (B3942) Nanotechnology (3942R001) Nanotechnology P Czech Ostrava 3 Compulsory study plan
2011/2012 (B3942) Nanotechnology P Czech Ostrava 3 Compulsory study plan
2010/2011 (B3942) Nanotechnology P Czech Ostrava 3 Compulsory study plan
2009/2010 (B3942) Nanotechnology P Czech Ostrava 3 Compulsory study plan

### Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner