516-0078/01 – Nanosensors and Spintronics (NaS)
Gurantor department | Institute of Physics | Credits | 4 |
Subject guarantor | Mgr. Jaroslav Hamrle, Ph.D. | Subject version guarantor | Mgr. Jaroslav Hamrle, Ph.D. |
Study level | undergraduate or graduate | Requirement | Optional |
Year | 2 | Semester | summer |
| | Study language | Czech |
Year of introduction | 2007/2008 | Year of cancellation | 2015/2016 |
Intended for the faculties | USP | Intended for study types | Follow-up Master |
Subject aims expressed by acquired skills and competences
Modify and reconstruct the mathematical models for the description of electromagnetic waves propagation in nanostructures.
Formulate the physical fundamentals for nanosensors and spintronics.
Evaluate and predict the applications.
Teaching methods
Lectures
Summary
Předmět vychází ze současného stavu rychle se rozvíjejícího oboru spintroniky, t.j. elektroniky využívající spin elektronu. Předmět pokrývá většinu důležitých směrů současné spintroniky. Předmět začíná definicí popisem elektronu a jeho spinu v pevné látce, pokračuje popisem spinově-polarizovaného proudu a spinové akumulace. Poté je uveden princip generace spinově polarizovaného proudu v nemagnetických materiálech, jak pomocí spinové injekce, tak pomocí spin-pumping. Dále jsou diskutovány nejdůležitější magnetoresistivní jevy (AMR, GMR, TMR), stejně tak jako spinový moment (spinový transfer). Následuje několik prototypových příkladů použití těchto jevů v laterálních systémech a v průmyslových aplikacích. Závěrem je stručný úvod do spin-kalorimetrie a do materiálů používaných ve spintronice.
Compulsory literature:
1. Nanomagnetism and Spintronics, Teruya Shinjo (Editor), Elsevier (2009).
2. Concepts in spin-electronics, S. Maekawa, Oxford University Press (2006).
3. F.J. Jedema, PhD. thesis, University of Groningen, The Netherlands (2002).
4. T. Valet and A. Fert, Theory of the perpendicular magnetoresistance in magnetic multilayers, Phys. Rev. B 48, 7099 (1993).
5. T. Yang, T. Kimura and Y. Otani, Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching, Nature Physics 4, 851 (2008).
Recommended literature:
GRIMES, Craig A., DICKEY, Elizabeth C., PISHKO, Michael V.: Encyclopedia of
Sensors, American Scientific Publishers, 10 dílů, ISBN: 1-59883-056-X, 2005.
Additional study materials
Way of continuous check of knowledge in the course of semester
E-learning
Other requirements
Systematic off-class preparation.
Prerequisities
Subject has no prerequisities.
Co-requisities
Subject has no co-requisities.
Subject syllabus:
1. Quantum description of the electron (wavefunction, uncertainty principle, tunelling). Orbital and spin moment of the electron. Non-collinear magnetization. Pauli matrices.
2. Electron in solid-state. Fermi level, Fermi-Dirac distribution. Difusive and ballistic transport of electron in solids.
3. Spin accumulation and spin-polarized current. Injection of spin-polarized current from ferromagnet to dia/para-magnetic materials using charge current. Valet-Fert theory. Conduction mismatch.
4. Magnetoresistive effects. Anisotropic magnetoresistivity (AMR). Giant magnetoresistance (GMR). Coherent and non-coherent tunnel magnetoresistance (TMR).
5. Generation of spin current by spin pumping. Basics of magnetization dynamics (FMR resonance, Landau-Lifschitz equation) in presence of spin-polarized current. Spin moment (i.e. spin transfer) – effect of spin-polarized current on magnetization. Domain wall manipulation by spin current. Magnetic spin oscillators (free, coupled).
6. Lateral devices using spin-polarized current. Local and non-local spin-injection. Three-dimensional flow of spin current.
7. Fundamentals of devices using spin-polarized current (GMR-TMR head, hard-disk, MRAM paměti, race track memory, spin oscillators).
8. Spin-Hall effect. Inverzní spin-Hall effect. Spinová calorimetry. Generation of spin current by temperature gradient.
9. Spin current in metals. Materials for spintronics. Relation between spin polarization and Fermi level. Spin relaxation. Half-metals, half-metallic Heusler compounds.
10. Spin current in semiconductors and organic materials. Rashba effect. Relation between spin-polarized current and radiated light polarization.
Conditions for subject completion
Occurrence in study plans
Occurrence in special blocks
Assessment of instruction
Předmět neobsahuje žádné hodnocení.