516-0931/01 – Interaction Processes of Liquid Jets (IPKP)

Gurantor departmentInstitute of PhysicsCredits0
Subject guarantorprof. Ing. Libor Hlaváč, Ph.D.Subject version guarantorprof. Ing. Libor Hlaváč, Ph.D.
Study levelpostgraduateRequirementOptional
YearSemesterwinter + summer
Study languageCzech
Year of introduction2005/2006Year of cancellation2011/2012
Intended for the facultiesFMT, FBI, FS, HGF, FASTIntended for study typesDoctoral
Instruction secured by
LoginNameTuitorTeacher giving lectures
HLA57 prof. Ing. Libor Hlaváč, Ph.D.
Extent of instruction for forms of study
Form of studyWay of compl.Extent
Full-time Examination 0+0
Part-time Examination 0+0

Subject aims expressed by acquired skills and competences

Analyze the interaction of various types of liquid jets with various kinds of materials Evaluate the potential of physical description of interaction processes Set the limits of various procedures used for description of interactions Combine various kinds of description of interactions Apply the proper types of liquid jets for solution of problems in practice

Teaching methods

Lectures
Individual consultations

Summary

The subject is aimed at transfer of knowledge of physical processes taking place during interaction of liquid jet with matter, according to its state. The main emphasis is put on understanding of different interaction effects of liquid jet according to its actual character (pure liquid, liquid with liquid additives – polymers, liquid with solid state admixtures – abrasives, liquid in unusual thermodynamic states – supercooled or overheated) on matter in a solid state. Particular emphasis is put on differences in physical processes regarding the structure of the solid state matter and its thermodynamic state. The subject is based on extensive experimental background of own laboratories and practical experience.

Compulsory literature:

Annoni, M., Monno, M., Ravaiso, C., Strano, M., 2007. Abrasive waterjet: A flexible technology. Polipress, 240 p. Momber, A.W., Kovacevic, R., 1998. Principles of Abrasive Waterjet Machining. Springer-Verlag Ber, 420 p. Momber, A., 2005. Hydrodemolition of Concrete Surfaces and Reinforced Concrete. Elsevier Science, 278 p. Chen, F.L., Wang, J., Lemma, E., Siores, E., 2003. Striation formation mechanisms on the jet cutting surface. Journal of Materials Processing Technology, 141(2), 213-218 Deam, R.T., Lemma E., Ahmed, D.H., 2004. Modelling of the abrasive water jet cutting process. Wear, 257(9-10), 877-891 Hashish, M., 1989. A Model for Abrasive - Waterjet (AWJ) Machining. Transactions of the ASME, 111(2), 154-162 Hlaváč, L.M., 2009. Investigation of the Abrasive Water Jet Trajectory Curvature inside the Kerf. Journal of Materials Processing Technology, (doi:10.1016/j.jmatprotec.2008.10. 009) 209(8), 4154-4161 Zeng, J., Kim, T.J., 1996. An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear, 193, 207-217

Recommended literature:

Articles in proceedings of conference series of BHRGroup, WJTA and ISWJT, articles in journals International Journal of Machine Tools & Manufacture, Journal of Materials Processing Technology, Wear, International Journal of Advanced Manufacturing Technology a Transactions of the ASME. Hlaváč, L.M., Hlaváčová, I.M., Jandačka, P., Zegzulka, J., Viliamsová, J., Vašek, J., Mádr, V.: Comminution of Material Particles by Water Jets – Influence of the Inner Shape of the Mixing Chamber. International Journal of Mineral Processing, 95(1-4), 2010, p. 25-29. Vikram, G., Babu, N.R., 2002. Modelling and Analysis of Abrasive Water Jet Cut Surface Topography. Intenational Journal of Machine Tools and Technology, 42(12), 1345-1354

Way of continuous check of knowledge in the course of semester

Test, tutorial

E-learning

Other requirements

Systematic preparation for lectures.

Prerequisities

Subject has no prerequisities.

Co-requisities

Subject has no co-requisities.

Subject syllabus:

1. Types of liquids 2. Types of solid substances in terms of response to high concentration of mechanical energy 3. Strike of liquid on solid particles 4. Strike of liquid on a homogeneous continuum 5. Interaction of fluid flow with homogeneous continuum 6. Strike of liquid on a inhomogeneous continuum 7. Interaction of fluid flow with inhomogeneous continuum 8. Generalized physical access 9. Special environment and material conditions during interaction 10. Application of physical description of liquid jet interaction with the material in practice

Conditions for subject completion

Conditions for completion are defined only for particular subject version and form of study

Occurrence in study plans

Academic yearProgrammeField of studySpec.ZaměřeníFormStudy language Tut. centreYearWSType of duty
2009/2010 (P1701) Physics (1702V001) Applied Physics P Czech Ostrava Optional study plan
2009/2010 (P1701) Physics (1702V001) Applied Physics K Czech Ostrava Optional study plan
2009/2010 (P2102) Mineral Raw Materials (3902V010) Automation of Technological Processes P Czech Ostrava Optional study plan
2009/2010 (P2102) Mineral Raw Materials (3902V010) Automation of Technological Processes K Czech Ostrava Optional study plan
2008/2009 (P1701) Physics K Czech Ostrava Optional study plan
2008/2009 (P1701) Physics P Czech Ostrava Optional study plan
2008/2009 (P2102) Mineral Raw Materials (3902V010) Automation of Technological Processes P Czech Ostrava Optional study plan
2008/2009 (P2102) Mineral Raw Materials (3902V010) Automation of Technological Processes K Czech Ostrava Optional study plan

Occurrence in special blocks

Block nameAcademic yearForm of studyStudy language YearWSType of blockBlock owner